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Abstract. Explicit exact formulas are presented, for the leading order term in a strict chiral covariant
derivative expansion, for the abnormal parity component of the effective action of two- and four-dimensional
Dirac fermions in the presence of scalar, pseudo-scalar, vector and axial vector background fields. The
formulas hold for completely general internal symmetry groups and general configurations. In particular,
the scalar and pseudo-scalar fields need not be on the chiral circle.

1 Introduction

This paper is the second part of the work initiated in [1]
on the explicit computation of the effective action of chi-
ral gauge fermions, including scalar, pseudo-scalar, vec-
tor and axial vector external fields, within a strict co-
variant derivative expansion. Reference [1] dealt with the
real part of the effective action and here the imaginary
part is worked out at leading order for two- and four-
dimensional fermions. The main feature of both works is
that a strict covariant derivative expansion is carried out,
rather than a perturbative, commutator or heat-kernel ex-
pansion, and that explicit formulas are given which hold
without putting any restrictions on the external field con-
figurations, nor are we making assumptions on the internal
symmetry group. In fact, this generality helps to concen-
trate on the computational issues and results in an easier
calculation.

The imaginary part of the effective action of chiral
gauge fermions (the phase of the fermionic determinant)
displays some well-known peculiarities as compared to the
real part. It presents a 2πi multivaluation, anomalies in the
chiral symmetry and contains topological pieces. In com-
parison the real part only displays a scale anomaly, which
however is absent in the imaginary part. These peculiari-
ties make this piece more interesting from the theoretical
point of view and has been the source of deeply origi-
nal insights [2–10]. Consequently, it has extensively been
studied in the literature (for reviews see e.g. [11,12].)

The presence of the chiral anomaly introduces some
mathematical subtleties in the definition of the effective
action at the non-perturbative level [11] since the chirally
covariant renormalized current (the variation of the effec-
tive action) fails to be consistent [13]. These complications
are also present in the computation of the effective action
in the framework of an asymptotic expansion, such as the
covariant derivative expansion to be considered here. A di-
rect computation must necessarily break chiral invariance

and becomes prohibitive if one insists on a strict derivative
expansion except for particular internal symmetry groups.
The reason is that in a strict covariant derivative expan-
sion both the scalar and the pseudo-scalar fields must be
treated non-perturbatively, and as a rule it not possible
to treat two or more operators non-perturbatively unless
they commute. For instance, in [14] such a calculation
is done for two-dimensional fermions with SU(2) inter-
nal symmetry group. In that case the particular algebraic
properties of su(2) allowed one to carry out the computa-
tion, but the same method cannot be extended to general
groups.

An alternative method is to make a chiral rotation
to fix the chiral gauge so that there is no pseudo-scalar
field. Then a direct calculation becomes possible, using
for instance a ζ-function approach combined with a sym-
bols method [14]. Because the chiral gauge has been fixed
(or rather, reduced to a manageable vector gauge invari-
ance), such as result is, in some sense, manifestly chiral
gauge invariant (the anomaly comes through the Wess–
Zumino–Witten term generated by the chiral rotation).
However, this procedure is not completely satisfactory for
various reasons. The result would be given in terms of
the rotated variables rather than in terms of the origi-
nal external fields. In addition, it does not fully exploit
the symmetries of the problem; as will be shown, within
the derivative expansion the effective action depends an-
alytically on the external fields, in a sense to be made
more precise below, and this property is not explicit in
terms of the rotated variables. Analyticity is a property
of the effective action functional which is not shared by
most functionals that are chiral invariant (modulo anoma-
lies). Another important shortcoming of that method, as
compared to the method to be presented here, is that the
functional depends on three objects, the (rotated) scalar
field S, the axial field A and the vector gauge covariant
derivative DV , whereas in our approach there are just two
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objects, an effective scalar field m and an effective vector
gauge covariant derivative D which behave almost as those
of a vector-like theory (i.e., a theory without pseudo-scalar
nor axial vector fields). This results in a great reduction of
the amount of algebra required, due to the smaller number
of algebraic combinations and the fact that analyticity is
preserved throughout.

The method proposed in this work is based on using
a suitable notation which allows one to map certain chi-
ral invariant objects with an analytical form (and in par-
ticular the chiral covariant effective current) to the cor-
responding object in an effective vector-like theory. This
allows us to carry out computations in the effective vector-
like theory and then map back the result into the chiral
setting. This is a kind of analytical extension from the
vector-like case to the full chiral case and the chiral result
so obtained corresponds to the LR version of the effective
action. This procedure is very convenient from the com-
putational point of view since the vector-like case is very
well understood and many methods exist to deal with it.
In particular, the issue of renormalization is almost trivial
since the requirement of (effective) vector gauge invariance
completely fixes the form of the effective action.

For the normal parity component the mapping be-
tween chiral and vector theories is literal and applies to the
effective action itself. This is exploited in [1]. In the abnor-
mal parity sector the mapping from vector to chiral holds
whenever the trace cyclic property is not involved, e.g. for
the covariant effective current, but not for the effective
action itself, since this would not allow for the existence
of the chiral anomaly. In our formalism this is reflected
in the fact that m is odd under cyclic transformations.
Our strategy will then be along the lines of Schwinger’s
method [15], i.e., we first compute the covariant effective
current and subsequently use this current to recover the
effective action. This second step is done by writing down
an explicit analytical functional of the type of the Wess–
Zumino–Witten term which saturates the chiral symmetry
breaking terms of the effective action, and adjusting the
remainder, which necessarily will be chiral invariant, so
that the correct current is reproduced. The calculation of
the current is done from scratch by using essentially the
method of symbols, but in the improved version due to
Pletnev and Banin [16] which reduces the amount of alge-
bra while preserving explicit gauge invariance throughout.

In Sect. 2 we recall the notation introduced in [1] and
extend it to cover the abnormal parity case. A set of no-
tational conventions are introduced so that the chiral case
can, to a large extent, be treated as a vector theory. A fur-
ther convention is introduced which allows us to carry out
explicit loop momentum integrations without assuming
commutativity of the operators involved. This convention
is illustrated in the same section with the Wess–Zumino–
Witten action which is brought into an explicit Lagrangian
form preserving manifest global vector gauge invariance,
for a general gauge group. In Sect. 3 the chiral covariant
effective current is explicitly computed at leading order in
the derivative expansion using the method of symbols for
the two- and four-dimensional cases. In Sect. 4 we intro-

duce an extended version of the gauged Wess–Zumino–
Witten action which holds off the chiral circle and de-
pends analytically on the external fields. Next we consider
the general form of the possible chiral invariant remainder
(which saturates the full abnormal parity effective action
at leading order). This remainder is then explicitly deter-
mined from the current. In Sect. 5 several comments and
extensions are given. In Sect. 5.1 we show that on the chi-
ral circle our extended gauge Wess–Zumino–Witten term
reduces to the usual one and the chiral invariant remain-
der vanishes. This result is extended to the case of an
Abelian chiral radius and in particular to the full Abelian
case. In Sect. 5.2 the effective density (the variation of the
effective action with respect the scalar and pseudo-scalar
fields) is explicitly computed and the anomalous continu-
ity equation verified. Both for the current and for the den-
sity an unexpected extra symmetry is found which does
not follow from Lorentz and chiral symmetries but seems
to depend on the concrete properties of the effective ac-
tion functional. In Sect. 5.3 the VA version of the effec-
tive action is considered and the corresponding formulas
are given for the particular case of a vanishing pseudo-
scalar field. In Sect. 5.4 we show that the imaginary part
of the effective action vanishes when one of the matter
chiral fields is a spacetime constant and there are no chi-
ral gauge fields. Next we show how this observation, plus
the assumption of analyticity, is sufficient to completely
determine the effective action in two dimensions and puts
restrictions in higher dimensions. In Sects. 5.5 and 5.6 we
consider further properties of the extended gauged Wess–
Zumino–Witten term and of the chiral invariant remain-
der. Finally, in Sect. 5.7 we verify a descent relation which
relates the effective action in d dimensions with the vector
current in d+2 dimensions and the Chern–Simons term in
d + 1 dimensions. In AppendixA we collect the formulas
corresponding to the chiral anomaly and the various ver-
sions of the Wess–Zumino–Witten action and Appendix B
contains the explicit formulas for the effective action and
the effective current in two and four dimensions.

2 Notation and conventions

We will follow the notation and conventions summarized
in Sect. 2 of [1]. The extensions needed to adapt these con-
ventions to the pseudo-parity odd case are presented be-
low. (Reference [1] deals with the pseudo-parity even com-
ponent of the effective action, W+.) Because some of these
conventions are not standard, the reader is invited to con-
sult Sect. 2 of [1] for further details.

The spacetime is Euclidean and flat and its dimension
d is even. The class of Dirac operators to be considered is

D =D/R PR+ D/L PL +mLRPR +mRLPL (1)

where PR,L = 1
2 (1±γ5) are the projectors on the subspaces

γ5 = ±1. Our conventions are
γµ = γ†

µ, {γµ, γν} = 2δµν ,

γ5 = γ†
5 = γ−1

5 = ηdγ0 · · · γd−1, trDirac(1) = 2d/2, (2)
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where ηd = ±id/2 (a concrete choice will not be needed ex-
cept in Sect. 5.7). DR,L

µ = ∂µ + vR,L
µ are the chiral covari-

ant derivatives. The external bosonic fields vR,L
µ (x) and

mLR(x), mRL(x) are matrices in some generic internal
space (referred to as flavor), the identity in Dirac space
and multiplicative operators in x space. In order to avoid
infrared divergences we will assume that the matricesmLR
and mRL are nowhere singular. No algebraic assumptions
will be made on the internal space matrices in the deriva-
tion of our results. Of course, at the end, they can be
applied to particular interesting cases, such as Abelian
groups, or the case of scalar fields on the so-called chi-
ral circle, mLR(x)mRL(x) = M2, M2 being a constant
c-number, for which many results exist.

In what follows, the symbol 〈 〉 will we used as a short-
hand to denote

〈X〉d,B =
ηd(d/2)!
(2π)d/2d!

∫
B

tr(X). (3)

In this formula d is the space-time dimension, ηd is the
normalization in γ5, tr refers to flavor only, B is some n-
dimensional integration region, and X is some differential
n-form which is a matrix in flavor space. In general B will
be the spacetime and X a d-form, and the subscripts B
and d will be suppressed.

2.1 Specific conventions

The effective action is a functional of the external fields,
defined as W [v,m] = −Tr log(D), where some regular-
ization plus renormalization is understood. The pseudo-
parity transformation is defined as the operation of ex-
changing the chiral labels R and L everywhere. The ef-
fective action then decomposes naturally into a pseudo-
parity even (or normal parity) component, W+[v,m], and
a pseudo-parity odd (or abnormal parity) one, W−[v,m].
The latter is also characterized by being purely imaginary
(in Euclidean space), containing the Levi-Civita pseudo-
tensor, having topological pieces, displaying multivalua-
tion by integer multiples of 2πi, and presenting an essen-
tial anomaly under chiral transformations.

The effective action can be expanded into terms with
a well-defined number of covariant derivatives (or equiva-
lently, of Lorentz indices). For each such term T , one can
consider its pseudo-parity conjugate T ∗, i.e., the same ex-
pression as T after the exchange of all labels L with R.
Then we will adopt the following convention (see Sect. 2
of [1] for further details):
Convention 1. In W+, the terms T and T ∗ will be iden-
tified, so that under this convention T actually stands for
1
2 (T + T ∗). In W− every term T is identified with −T ∗
and thus T stands for (1/2)(T − T ∗).

Consider now a typical chiral invariant expression such
as tr(FR

µνD̂µmRLD̂νmLR). (As usual,

D̂µmRL = DR
µ mRL − mRLD

L
µ , FR

µν = [DR
µ , DR

ν ],

etc.) It can be observed that each factor falls into one of
the following classes, according to its chiral labels, namely

RR, LL, RL and LR. For instance, D̂νmLR lies in the class
LR. By inserting such a factor in an expression, the chiral
label is flipped from R to L as one moves from right to left
in the formula (or equivalently on the fermion loop). On
the other hand FR

µν belongs to the class RR, and it does
not flip the chiral label. Further, it is observed that in such
a chiral invariant expression any two adjacent chiral labels
belonging to two different factors are equal (e.g. the label
L in D̂µmRLD̂νmLR). This must be so in order to preserve
covariance under chiral transformations. Moreover, if the
expression is inside the trace, the first and last chiral labels
must also coincide for the same reason, due to the cyclic
property of the trace. Thus in chiral covariant expressions
the following convention can be used (see Sect. 2 of [1] for
further details):
Convention 2. In expressions where the chiral labels are
combined preserving chirality, these labels are redundant
and will be suppressed, so a term such as XRRYRLZLR
will be written as (XYZ)RR

1. Inside a trace it is sufficient
to write tr(XYZ) plus the convention that the first (and
last) implicit label is R. (This latter convention is needed
to fix the sign in the pseudo-parity odd case.)

For instance

tr(FµνD̂µmD̂νm) = tr(FR
µνD̂µmRLD̂νmLR)

= ±tr(FL
µνD̂µmLRD̂νmRL)

=
1
2
tr(FR

µνD̂µmRLD̂νmLR)

± 1
2
tr(FL

µνD̂µmLRD̂νmRL). (4)

The ± refer to W±, respectively.
In the pseudo-parity even sector, the cyclic property

of the trace works as usual within the index-free nota-
tion introduced by Convention 2 [1]. However, the cyclic
property is modified for W−. Let X be of type LR or RL
then

tr(Xm) = tr(XRLmLR) = tr(mLRXRL) = ±tr(mRLXLR)
= ±tr(mX), in W±. (5)

This is equivalent to saying that, in W−, the object m
changes sign under the cyclic property. The same is true
for any object that flips the chiral label, i.e. of the type
RL or LR. Consider now the following identities in W−
(where f and g are ordinary functions):

tr(f(m)g(m)) = tr(g(m)f(−m)) = tr(g(−m)f(m)). (6)

The first equality follows from moving f(m) to the right,
the second one from moving g(m) to the left using the
(modified) cyclic property. This equality implies that only
the even component of the function f(x)g(x) (under x →
−x) contributes. This is just an illustration of the obvious
consistency condition stating that the number of chirality

1 This example assumes, of course, that we know beforehand
that Y and Z flip the chirality label and X does not. This is
the case in practice since W ± is constructed with DR,L

µ , mLR

and mRL.
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flipping factors must always be even (e.g. f(m)g(m) must
contain even powers of m only) because in any expression
inside the trace the first and the last chiral labels must
coincide due to chiral invariance. This observation applies
to W+ as well.

In this notation, the chiral rotations mLR → Ω−1
L mLR

ΩR, etc., become

m → Ω−1mΩ, vµ → Ω−1vµΩ +Ω−1∂µΩ, (7)

whereas for infinitesimal rotations,ΩR,L = exp(αR,L) with
αR,L infinitesimal:

δm = [m, α], δvµ = D̂µα. (8)

A further convention is introduced in [1], namely
Convention 3. In an expression f(A1, B2, . . .)XY · · · the
ordering labels 1, 2, . . . will denote the actual position of
the operators A,B, . . . relative the fixed elements X,Y, . . .
so that A is to be placed before X, B between X and
Y , etc. That is, for a separable function f(a, b, . . .) =
α(a)β(b) · · ·, the expression stands for α(A)Xβ(B)Y · · ·

Note that this convention is independent of Conven-
tions 1 and 2. Combining the several conventions and the
cyclic property one has, for instance,

tr(f(m1,m2)FµνFαβ) = tr(f(−m3,m2)FµνFαβ)
= tr(f(−m2,m1)FαβFµν) (9)

in W−. In the first equality, m1 (m in position 1) is moved
to position 3 (i.e. becomes the rightmost factor) using the
cyclic property, becoming −m3. Then, in the second equal-
ity Fµν is moved to the rightmost position, and the posi-
tion labels of m are modified accordingly.

Before proceeding, let us comment on the meaning of
an expression, such as f(A1, B2, C3)XY , with operators
acting in different positions. It should be clear that such an
operator is a well-defined one. The simplest way to reduce
it to a more usual form is by expressing the function f as
a linear combination of separable functions,

f(z1, z2, z3) =
∑

i

αi(z1)βi(z2)γi(z3); (10)

then

f(A1, B2, C3)XY =
∑

i

αi(A)Xβi(B)Y γi(C), (11)

and the right-hand side is perfectly well defined. In fact,
such a representation in terms of separable functions is
the usual means by which the Convention 3 enters in the
calculations (typically the sum over i corresponds to an
integration over the momentum of the loop). An alterna-
tive method to fully characterize the operator f(A1, B2,
C3)XY is by means of its matrix elements. In this con-
text, the natural procedure is to use as a basis the ones
formed by the eigenvectors of the operators A, B and C.
Let us denote these basis elements by |n,A〉, |m,B〉 and
|r, C〉, with associated eigenvalues an, bm and cr, and let

〈n,A|, 〈m,B| and 〈r, C| be the corresponding dual basis;
then

〈n,A|f(A1, B2, C3)XY |r, C〉 =
∑
m

f(an, bm, cr)XnmYmr,

(12)
where Xnm = 〈n,A|X|m,B〉 and Ymr = 〈m,B|Y |r, C〉.
(This is easily established using the previous representa-
tion in terms of separable functions.) This kind of repre-
sentation is in fact the one usually employed in the liter-
ature (see e.g. [11]). The point to be emphasized is that
the operator depends solely on the function f itself and
not on any particular representation.

Special care requires the use of the Convention 3 in
combination with Conventions 1 and 2 in practical appli-
cations. This is because the meaning of the symbols under
the Convention 2, depends on its position in the formula.
For instance, in an expression such as tr(f(m1,m2)Fµν

Fαβ), where f is a complicated function it may not be
clear how to expand the formula, i.e., how to put back the
chiral labels. Fortunately, there is a simple general proce-
dure to do so, namely, to decompose f into its even and
odd components under m1,2 → ±m1,2:

f(m1,m2) = A(m2
1,m

2
2) +m1B(m2

1,m
2
2)

+m2C(m2
1,m

2
2) +m1m2D(m2

1,m
2
2). (13)

As noted above, consistency requires f to be even under
m → −m; thus B = C = 0. This yields

tr[f(m1,m2)FµνFαβ ]

= tr[A(m2
1,m

2
2)(Fµν)(Fαβ)]

+tr[D(m2
1,m

2
2)(mFµν)(mFαβ)]. (14)

Now, from our conventions it unambiguously follows that
the chiral labeling is

tr[A(m2
R1,m

2
R2)(F

R
µν)(F

R
αβ)]

+tr[D(m2
R1,m

2
L2)(mRLF

L
µν)(mLRFR

αβ)]. (15)

In this formula Convention 1 still applies, m2
R = mRLmLR

and m2
L = mLRmRL

2.
Several illustrations of the Convention 3 (besides its

use in W+) have been presented in [1] and elsewhere [17,
18]. Here we present another application which will be
needed below. First, let us introduce standard differential
geometry notation: the quantities dxµ are anticommut-
ing, ddx = dx0dx1 · · ·dxd−1, d is the differential operator
dxµ∂µ, v stands for vµdxµ, D = Dµdxµ, F = D2 = dv+v2,
etc. Consider now the following n-form

X = f(A1, . . . , An)(dA)n, (16)

where A is some matrix-valued function defined on some
manifold, and f(z1, . . . , zn) is an ordinary function. We
want to compute dX. To this end, recall the rule [1]

δf(A) =
f(A1)− f(A2)

A1 − A2
δA, (17)

2 Alternatively, the second term could have been writ-
ten as tr[D(m2

1, m
2
2)(mFµνm)(Fαβ)], yielding tr[D(m2

R1, m
2
R2)

(mRLFL
µνmLR)(FR

αβ)]. This is equivalent to the previous result.
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for an arbitrary variation of A (the labels 1 and 2 refer to
A before and after δA, respectively, following Convention
3). In particular, df(A) = (f(A1)− f(A2))/(A1 −A2)dA.
Applying the operator d to X as defined in (16), and using
the previous rule to variate each of the arguments Ai in
X, immediately yields

dX = ∆f(A1, . . . , An+1)(dA)n+1, (18)

with

∆f(z1, . . . , zn+1)

=
n∑

k=1

(−1)k+1
{(

f(z1, . . . , zk, zk+2, . . . , zn+1)

−f(z1, . . . , zk−1, zk+1, . . . , zn+1)
)/(

zk − zk+1

)}
. (19)

Because the operator ∆ is a representation of the opera-
tor d acting in the space of ordinary functions, it follows
that ∆2 = 0, as is readily verified. The same operator ap-
pears when the covariant derivative D̂ is used, instead of
d, although in this case terms involving the field strength
tensor F are also generated.

2.2 Application to the Wess–Zumino–Witten action

An interesting illustration of the usefulness of the Conven-
tion 3 can be given by using it to explicitly integrate the
WZW action [9]. In two spacetime dimensions, the WZW
functional takes the form

ΓWZW[U ] =
η2

4π

∫
B3

Ω3, Ω3 = −1
3
tr
[
(U−1dU)3

]
. (20)

The integration takes place in the interior of a three-
dimensional ball with a sphere S2 (the compactified space-
time) as boundary. The field U(x, t), which takes values
on some matrix group, interpolates between u(x), at t = 1
and a single point, say U = 1, at t = 0. Because Ω3 is a
closed 3-form and u(x) contractile, the functional can be
written as the integral of a 2-form over S2:

ΓWZW[U ] =
η2

4π

∫
S2

Ω2, (21)

with

Ω2 = −
∫ 1

0
dttr

[
(U−1∂tU)(U−1dU)2

]
, (22)

and the result does not depend on the concrete interpo-
lation. We will make use of our Convention 3 in order
to explicitly carry out the integration on the parameter
t. As interpolating field, let us take3 U(x, t) = u(x)t =

3 The choice U(x, t) = 1 + t(u(x) − 1) is even simpler and,
of course, gives the same result, however, it may be disturbing
that it does not lie on the group manifold when u(x) belongs
to a group of unitary matrices.

exp(t log u(x)). The branch of the logarithm can be cho-
sen with continuity because u(x) is contractile to 1, by
assumption. Using Convention 3

U−1∂tU = log u, U−1dU =
1− (u2/u1)t

u1 − u2
du, (23)

where the labels 1 and 2 refer to before and after applica-
tion of du, respectively. When these formulas are inserted
in the expression of Ω2, U−1∂tU carries the position label
1, the first U−1dU block gives rise to the labels 1 and 2,
and the second block to labels 2 and 3. Due to the cyclic
property u3 is then identified with u1

4. This gives

Ω2 = −
∫ 1

0
dttr

[
log u1

1− (u2/u1)t

u1 − u2

1− (u1/u2)t

u2 − u1
du2
]
.

(24)
The point of following this procedure is that the depen-
dence on t is now explicit and u1 and u2 are effectively
c-numbers; therefore the integration over t is immediate:

Ω2 = tr
[
hWZW(u1, u2)du2] , (25)

where the function hWZW is given by

hWZW(z1, z2) =
1

z1 − z2

(
log(z1)− log(z2)

z1 − z2

− 1
2

(
1
z1

+
1
z2

))
. (26)

It should be noted that, due to the cyclic property, the re-
lation in (25) does not uniquely determine hWZW(z1, z2)
unless the further constraint hWZW(z1, z2) = −hWZW(z2,
z1) is imposed. On top of this, a symmetric component
can be added which does not contribute inside the trace.
In actual applications of the formula the purely antisym-
metric version of hWZW is clearly preferred, since an un-
symmetrized function (although not Ω2 itself) could in
general present spurious singularities at u1 = u2 as well
as spurious scale violations. The latter refers to the follow-
ing. Ω3 is invariant under an arbitrary local rescaling of U ,
U(x, t) → λ(x, t)U(x, t), where λ is a c-number. Because
Ω2 is unique in some sense (to be discussed below), it must
also display this invariance. The invariance under a global
rescaling already implies that (the symmetrized version
of) hWZW must be a homogeneous function; the possible
breaking introduced by the logarithm is canceled in this
version. Further, the invariance under a local rescaling is
also preserved due to hWZW(z, z) = 0 in the antisymmet-
ric version.

The precise statement is that hWZW is the unique func-
tion that works for a generic gauge group, that is, if no
further assumptions are made on the algebraic properties
of the field u(x). For instance, any function h would give

4 No confusion should arise with our previous observation
(cf. (5)) that m changes sign under the cyclic property in the
case of W −, since Conventions 1 and 2 are not being used here.
On the other hand, du does change sign in Ω2 under the cyclic
property since it is a one-form.
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the correct vanishing result in the particular case of an
Abelian gauge group. Another interesting case is that of
u ∈ SU(2). For this group u + u−1 is c-number and the
same goes for any function g(u) such that g(z) = g(z−1).
This is sufficient to show that, for any antisymmetric func-
tion h(z1, z2),

tr
[
h(u1, u2)(u−1du)2

]
= tr

[
h(u, u−1)(u−1du)2

]
(u ∈ SU(2)); (27)

thus, in particular

Ω2 = tr
[
hWZW(u)(u−1du)2

]
(u ∈ SU(2)), (28)

with

hWZW(z) =
4 log(z)− z2 + z−2

2(z − z−1)2
. (29)

It is interesting to note that, in principle, the function
hWZW(z1, z2) can also be determined through an equa-
tion involving only ordinary functions and no differential
forms. This comes about as follows. The equation to be
solved is Ω3 = dΩ2, where Ω2 is the unknown. For the
latter, the general form in (25) is proposed, whereas Ω3
can be rewritten as

Ω3 = tr
[
−1
3

1
U1U2U3

dU3
]
. (30)

The relation in (18) then implies

−1
3

1
z1z2z3

=
1
3
(∆hWZW(z1, z2, z3) +∆hWZW(z2, z3, z1)

+ ∆hWZW(z3, z1, z2)) , (31)

where the cyclic property has been used to be able to
equate both sides of the equation5. Because of the lack
of the appropriate mathematical techniques, this kind of
equation does not seem to be particularly useful to deter-
mine the function hWZW; nevertheless it has the merit of
reducing a problem of differential forms to one of ordinary
functions. Certainly it serves to check our previous result
for hWZW.

The analogous expressions in four dimensions are

ΓWZW[U ] =
η4

48π2

∫
B5

Ω5,

Ω5 = −1
5
tr
[
(U−1dU)5

]
. (32)

Ω4 = tr
[(

1
u12u23u34u41

(
u1

u2
+

u1

u3
+

u1

u4
− 1

2
u1u3

u2u4

)
+ 2

u12 − u41

u2
12u13u2

41
log(u1)

)
du4
]
, (33)

5 It should be noted that the operator ∆ does not commute
with the operation P of projecting the component which is
invariant under cyclic permutations. Thus, if ∆ is now applied
to the right-hand side of (31) the result does not vanish (despite
the property ∆2 = 0) but it does vanish after a subsequent
application of P . This expresses the fact that the 3-form Ω3 is
closed.

where uij = ui − uj . For the sake of brevity the function
has not been explicitly symmetrized in order to extract its
invariant component under cyclic permutations. As noted
before in the two-dimensional case, such a symmetrization
is needed in practice.

Because in the four-dimensional case the integral refers
to a 4-form, the formula seems to predict a vanishing value
(or more generally, a multiple of 2πi) for the WZW term
when the gauge group is three-dimensional such as SU(2),
whereas actually the result is a multiple of iπ. However,
the iπ result corresponds to configurations which cannot
be contracted within SU(2). Another observation is that
the use of arbitrary functions h(z1, z2) in two dimensions,
or h(z1, z2, z3, z4) in four dimensions, allows one to pro-
pose phenomenological contributions to the effective ac-
tion in the pseudo-parity odd sector, which are more gen-
eral than the usual WZW term. All these possible new con-
tributions are automatically invariant under global vector
transformations (u �→ Ω−1uΩ with constant Ω). Among
them, the WZW term is singularized because it is invari-
ant under global chiral transformations (u �→ Ω−1

L uΩR
with constant ΩL,R). On the other hand, it can be noted
that Ω2 (or Ω4 in four dimensions) is not the unique so-
lution of Ω3 = dΩ2, since Ω2 + dω (ω being an arbitrary
1-form) would also be a solution. Ω2 is singularized be-
cause it is the one solution which is manifestly invariant
under global vector transformations.

3 Explicit computation
of the covariant current

As stated above, our purpose is to compute the leading
term of the pseudo-parity odd component of the effective
action of Dirac fermions. By leading term we mean the
one with the smaller number of covariant derivatives, and
covariant will always refer to chiral gauge transformations.
BecauseW−[v,m] contains the Levi-Civita pseudo-tensor,
the leading term is that with d Lorentz indices, d being
the spacetime dimension, which is assumed to be even. In
practice we will consider d = 0, 2, 4. All other higher or-
der terms in the derivative expansion are ultraviolet finite
and thus free from anomalies and multivaluation. The chi-
ral anomaly, multivaluation and topological pieces of the
effective action are contained in the leading term. There
are no other anomalies (such as scale or parity anomalies)
in W−[v,m] in even dimensions. Since no higher orders
will be considered in this work, from now on W−[v,m]
will be used to refer to the leading term. We will always
work with the LR version of the effective action except in
Sect. 5.3 and AppendixA.

3.1 The covariant current

Due to the presence of the chiral anomaly in the pseudo-
parity odd component of the effective action, W−[v,m] is
not a chiral invariant functional, and this makes it advis-
able to use an indirect procedure to compute it. We will
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adopt the traditional Schwinger approach [15] of working
with the current, i.e. the variation of the effective action
[13,11]. The reason of course is that there is a version of
the current which is chiral covariant and thus easier to
treat.

For subsequent reference, we note that there are two
quantities to be distinguished: the effective “current” J−

v

which is related to the variation with respect to the gauge
fields, and the effective “density” J−

m which is the variation
with respect to the scalar fields. The consistent effective
current and density will be defined as

δW−[v,m] =
〈
J−

v δv + J−
mδm

〉
. (34)

Our conventions 1 and 2 are being used, δm and δv are
arbitrary variations of the external fields, and δm, δv, J−

v

and J−
m are 0-, 1-, (d − 1)- and d-forms, respectively. 〈 〉

was defined in (3).
In addition, one has to distinguish between the con-

sistent and the covariant currents. The former is the vari-
ation of the effective action, but it fails to be chiral co-
variant due to the presence of the chiral anomaly. On the
other hand, the chiral covariant version J−

v,c is not consis-
tent, i.e., is not a true variation. Both versions of the ef-
fective current are realizations of the same formal object.
This means that they coincide in their ultraviolet finite
pieces and so they differ only by a counterterm which is a
polynomial in the external fields and their derivatives:

J−
v = J−

v,c + P(v). (35)

P(v) is a fixed known polynomial which depends solely
on the gauge fields and its derivatives. This polynomial is
purely geometrical in the same sense as the chiral anomaly,
and in fact is completely determined by the anomaly [10].

The idea of the calculation of W−[v,m] is as follows.
We will explicitly compute the covariant current, then we
will write the most general form W−[v,m] consistent with
chiral and Lorentz symmetries, with some functions as un-
knowns, and finally these unknowns will be chosen so as to
reproduce the current. It is only necessary to make sure
that the effective action is uniquely determined by this
procedure. That this will be the case can be seen by the
following argument. Let A−[v,m] denote a possible am-
biguity in the effective action allowed by this procedure.
Because the current is reproduced, A−[v,m] must actu-
ally be a functional of m only. In addition, A−[m] must
be chiral invariant, since we have already imposed the cor-
rect chiral transformation on our functional. Then it can
be evaluated in any chirally rotated configuration, and in
particular one can always choose mLR = mRL. It follows
that the ambiguity vanishes since this functional is odd
under pseudo-parity, i.e., under exchange of the labels L
and R.

It is also possible to use the density J−
m instead of the

current. In this case the ambiguity can only be a function
of v and it is easily shown that no such chiral invariant
functional exists, at leading order. (The previous argu-
ment for the current holds, however, to all orders in the
derivative expansion.) An advantage of J−

m would be that

there is no distinction between consistent and covariant
density (the consistent density is automatically chiral co-
variant). Nevertheless, within a derivative expansion, the
current is preferable for purely technical reasons, namely,
the current contains d− 1 derivatives whereas the density
contains d ones, and thus it requires more work. Explicit
formulas for the effective density in two and four dimen-
sions are given in Sect. 5.2.

In order to highlight the main results of this section,
the calculation itself will be deferred until the end of this
section. As will be clear from the calculation below, the
general form of the covariant current in two and four di-
mensions (of course, at leading order in the derivative ex-
pansion) is

J−
v,c,d=2 = A(m1,m2)m′,

J−
v,c,d=4 = A(m1,m2,m3,m4)m′3 +A(m1,m2,m3, )Fm′

+ A′(m1,m2,m3)m′F, (36)

where m′ denotes the 1-form D̂m. The subindex c in the
currents recalls that this is the covariant current. The var-
ious symbols A denote different known functions. We will
often use the shorthand notation A12 to denote A(m1,m2),
A123 to denote A(m1,m2,m3), etc. In addition, A12 will
denote A(−m1,m2), etc.

As we have just mentioned, the formulas in (36) follow
from the explicit calculation; nevertheless, by now it is
probably already obvious that they are just the most gen-
eral possible form for the currents at leading order consis-
tent with Lorentz and chiral gauge invariance. Let us see
which properties are to be expected for the functions A
in J−

v,c. Because there is no scale anomaly in W−[v,m], A
should homogeneous functions of the appropriate degree.
Next, there is the consistency condition that in each term
of J−

v,c there should be as many L labels as R labels, thus
m must appear an even number of times:

A12 = − A12, A123 = −A123,

A′
123 = − A′

123, A1234 = −A1234 (37)

(that is, A(m1,m2) = A(−m1,−m2), etc.).
A further condition is implied by the fact that W−

[v,m] is purely imaginary. First, note that the functions
A are all purely real since there are no i’s in the formulas
nor can they be generated during the calculation, except
through γ5 when d = 4n + 2. The possible factor i is ex-
plicit through ηd in the normalization of 〈 〉 (cf. (3)). On
the other hand, the fact that all quantities involved be-
have in a well-defined way under Hermitian conjugation
allows one to reformulate this conjugation in terms of an
equivalent mirror transformation which has the advantage
of being purely algebraic (no complex conjugation is in-
volved). Such a mirror transformation is defined by the
following rules:
(i) the elementary objects m, v (or δv) and D are mirror
invariant,
(ii) the transformation is linear, and
(iii) the order of the factors is transposed (regardless of
whether they are functions or differential forms). The
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transformation of derived quantities follows from the pre-
vious rules, thus F → F, dm → −dm, dv → dv, D̂ → ∓D̂
(depending on whether it acts commuting or anticommut-
ing, respectively), m′ → −m′, etc. For instance,

〈mvm−1v〉 → 〈vm−1vm〉 = −〈mvm−1v〉,
A(m1,m2)m′ → −A(m2,m1)m′. (38)

The antihermiticity ofW−[v,m] implies that this quantity
is odd under the mirror transformation whereas J−

v and J−
m

are even. Therefore, the following conditions are found:

A12 = −A21, A′
123 = −A321, A1234 = −A4321. (39)

Thus the function A′
123 is not independent.

Finally, there is an extremely important property sat-
isfied by these functions which is finiteness in the coinci-
dence limit. This refers to the following. The most general
form of A12 allowed by consistency and mirror symmetry,
is

A12 = m1f(m2
1,m

2
2)− m2f(m2

2,m
2
1), (40)

for certain function f . Inserting this general form in the
expression of J−

c,v in (36) and making explicit the chiral
labels yields

(J−
v,c)R = f(m2

R1,m
2
R2)(mm′)R − f(m2

R1,m
2
R2)(m

′m)R.
(41)

As noted before, in order to numerically evaluate this ex-
pression, a natural procedure is to use a basis of eigen-
vectors of m2 [1]. In this way, (mm′)R and (m′m)R are
replaced by matrix elements, whereas the m2 are replaced
by eigenvalues. In particular, in the diagonal matrix ele-
ments, m2

1 and m2
2 take the same value (note thatmLRmRL

and mRLmLR are related by a similarity transformation
and thus they have the same eigenvalues). Finiteness of
the current requires that f must be finite as its two ar-
guments coincide. (Because the terms with mm′ and m′m
have different chiral labels no cancellation can take place
among them in general.) In summary, the functions A12,
A123, etc., must be regular as two or more arguments co-
incide up to a sign. This is automatically satisfied by the
true functional describing the current, as no physical sin-
gularity exists in the coincidence limit (cf. (68) and (69)
below); however, the formalism allows one to write func-
tionals which violate this condition. Such functionals are
only formal and are meaningless or at least ambiguous. On
the other hand, physical singularities can occur as m → 0
and they will be reflected in the effective action and cur-
rents.

After this discussion, let us quote the result coming
from the explicit calculation in two dimensions:

A12 = − 2
m1 − m2

+
2m1m2

(m1 − m2)(m2
1 − m2

2)
log(m2

1/m
2
2). (42)

The corresponding four-dimensional formulas are collected
in Appendix B. It can be checked that the full functions
have all the expected properties, and in particular they

preserve scale invariance and are regular in the coinci-
dence limits. At this point, it is perhaps worth noticing
another essential property of these functions, namely, they
are unambiguous. The analogous functions for the effec-
tive action are not unique due to integration by parts and
the trace cyclic property. This not the case for the cur-
rent; these functions are the unique result of the calcula-
tion. The formulas can only be simplified by considering
particular cases, i.e., particular flavor groups.

Analyzing the form of the functions A, we have found
it convenient to introduce the auxiliary functions Ā:

A12 = Ā12, A123 = Ā123, A1234 = Ā1234 (43)

(i.e. A(m1,m2) = Ā(m1,−m2), etc.). For these functions,
consistency and mirror symmetry translates into

Ā12 = −Ā12, Ā123 = −Ā123, Ā1234 = −Ā1234,

Ā12 = Ā21, Ā1234 = Ā4321. (44)

As we will see later, further conditions are implied by the
fact that the underlying theory is Lorentz and chiral co-
variant. In particular, this implies

Ā123 = Ā132. (45)

Remarkably, the true functions Ā, i.e. those resulting from
the calculation, in four dimensions turn out to have a
larger symmetry, namely, they are completely symmetric
functions of their arguments:

Ā12 = Ā21, Ā123 = Ā213 = Ā231,

Ā1234 = Ā2134 = Ā2341. (46)

(The complete symmetry also holds in two dimensions but
it this case this follows from previous symmetries.) It is
not clear why, in the four-dimensional case, the symmetry
is larger than expected. This symmetry does not follow
from Lorentz invariance and (anomalous) chiral symme-
try, since it is possible to write Lorentz invariant function-
als with the correct chiral anomaly but with associated
variations which are not symmetric functions under per-
mutation of their arguments (see (90) below). It seems to
be a property of the true current only. The same symme-
try is also found for the effective density in two and four
dimensions (see Sect. 5.2).

3.2 Explicit computation of the covariant current

Let us consider a first order variation of the effective ac-
tion. This is formally given by

δW [v,m] = −Tr
(
1
D

δD
)

. (47)

The variation of the Dirac operator is

δD = PRδmLRPR +PRδ v/L PL +PLδ v/R PR +PLδmRLPL.
(48)
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On the other hand, the inverse Dirac operator can be writ-
ten as follows. First let us write the Dirac operator as

D =
(

mLR D/L
D/R mRL

)
(49)

(where actually the γµ stand for submatrices of half di-
mension after restriction to the LR of RL sectors), and
then use the matrix identity(

A B
C D

)−1

=
(
(A − BD−1C)−1 (C − DB−1A)−1

(B − AC−1D)−1 (D − CA−1B)−1

)
,

(50)
where A, B, C, D are square submatrices. (This formula
can be rewritten in a way that holds too when A and D
have different dimensions and thus B and C are not square
matrices.) Now we have

D−1 = PR(mLR− D/L m−1
RL D/R)

−1PR

+ PR(D/R −mRL D/
−1
L mLR)−1PL

+ PL(D/L −mLR D/
−1
R mRL)−1PR

+ PL(mRL− D/R m−1
LR D/L)

−1PL. (51)

Therefore, the variation of the effective action is

δW [v,m] = −Tr
[
PR(mLR− D/L m−1

RL D/R)
−1δmLR

+ PR(D/R −mRL D/
−1
L mLR)−1δ v/R

+ PL(mRL− D/R m−1
LR D/L)

−1δmRL

+ PL(D/L −mLR D/
−1
R mRL)−1δ v/L

]
. (52)

This variation can be separated into its pseudo-parity even
(without γ5) and odd (with γ5) components. Then, Con-
ventions 1 and 2 can directly be applied and this yields

δW+[v,m] = −Tr
[
(m− D/ m−1 D/)−1δm

+ (D/ −m D/−1 m)−1δ v/
]
,

δW−[v,m] = −Tr
[
γ5

(
(m− D/ m−1 D/)−1δm

+ (D/ −m D/−1 m)−1δ v/
)]

. (53)

Once our conventions are used, the variations can be
rewritten in the simpler form

δW+[v,m] = −Tr
[

1
D/ +m

(δ v/ +δm)
]
,

δW−[v,m] = −Tr
[
γ5

1
D/ +m

(δ v/ +δm)
]
. (54)

(Actually, what enters is

1
2
(
(D/ +m)−1(δ v/ +δm) + (D/ −m)−1(δ v/ −δm)

)
,

but the even component under m → −m is automatically
selected by the Dirac trace.)

The variation of the pseudo-parity even component is
just

δW+[v,m] = −δTr log[D/ +m]. (55)

Therefore, in our notation, W+[v,m] is completely iden-
tical to a purely vector-like theory (i.e., one with vR = vL
and mLR = mRL), a fact already exploited in [1].

The pseudo-parity odd case is different. δW−[v,m]
cannot be expressed as the variation of a functional of
the form Tr[γ5f(m,D)], since that would not allow for the
chiral anomaly. Technically the difference with the pseudo-
parity even case comes from the cyclic property which is
affected by the presence of γ5 as well as by the different
behavior of m, cf. (5). Thus there is an obstruction to
integrate the variation preserving all symmetries [13,11].
No such problem arises if one wants to compute just the
current or the density: because one particular operator is
distinguished, namely δv or δm, the cyclic property is no
longer required and the anomalous behavior of m under
the cyclic property does not enter.

Comparing with its definition in (34), the current can
be formally read off from

δW−[v,m] =
∫

ddxtr
[
δvµ〈x|γ5γµ

1
D/ +m

|x〉
]

(δm = 0), (56)

where the trace includes flavor and Dirac spaces. This is
formal because the matrix element on the right-hand side
is ultraviolet divergent and needs to be given a meaning
through some renormalization procedure. Noting that the
cyclic property does not enter and in addition that no γ5
appears in (D/ +m)−1, it follows that the symbols D and
m behave algebraically as those of an effective vector-like
theory. This allows one to use a regularization prescrip-
tion preserving the corresponding vector gauge invariance.
Such an effective vector gauge invariance amounts to chiral
covariance for the operator (D/ +m)−1 and therefore this
procedure will yield the chiral covariant effective current.

In the particular case of two spacetime dimensions,
there is a shortcut. The two-dimensional identity γ5γµ =
−η2εµνγν allows one to relate δW−[v,m] with a variation
of W+[v,m], namely

δW−[v,m] =
∫

d2xtr
[
η2εµνδvµ

δW+

δvν

]
. (57)

Use of the result in [1],

W+
2,2[v,m] = − 1

4π

∫
d2xtr

[(
m1m2

log(m2
1/m

2
2)

m2
1 − m2

2
− 1
)

× (D̂µm)2

(m1 − m2)2

]
, (58)

directly produces

J−
v,c =

2
m1 − m2

(
m1m2

log(m2
1/m

2
2)

m2
1 − m2

2
− 1
)

D̂m, (59)

where the labels 1 and 2 refer to before and after D̂m,
respectively. From this formula, one can immediately read
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off the function A12 introduced in (36), and this gives the
result quoted in (42). In the two-dimensional case, there
is yet another method which yields the effective action
directly from the anomaly. This method is explained in
Sect. 5.4.

In order to compute J−
v,c beyond two dimensions we

will use the convenient method introduced by Pletnev and
Banin [16]. The method can be briefly summarized as fol-
lows: Let f(m,D) be an operator constructed out of m and
Dµ. In the usual symbols method (see e.g. [14]),

〈x|f(m,D)|x〉 =
∫

ddp

(2π)d
〈x|f(m,D + p)|0〉, (60)

where |0〉 is the state with zero wavenumber, i.e. 〈x|0〉 = 1,
and the momentum pµ is just a c-number6. The matrix
element 〈x|f(m,D)|x〉 is manifestly gauge covariant; how-
ever, 〈x|f(m,D+p)|0〉 is not, because of |0〉. Gauge invari-
ance is recovered only after momentum integration. This
nuisance is avoided by Pletnev and Banin by considering

〈x|f(m,D)|x〉

=
∫

ddp

(2π)d
〈x| exp(−∂pD)f(m,D + p) exp(∂pD)|0〉

=
∫

ddp

(2π)d
〈x|f(m̄, D̄)|0〉. (61)

The first equality follows because the momentum deriva-
tive ∂p

µ = ∂/∂pµ in the last exp(∂pD) factor has no effect
since there is no pµ dependence at its right. Similarly the
first factor exp(−∂pD) changes nothing, by integration by
parts in the momentum integration. The second equality
uses that exp(−∂pD)X exp(∂pD) defines a similarity trans-
formation. Actually the full similarity transformations is

X → X̄ = exp(−∂pD) exp(−xp)X exp(xp) exp(∂pD).

The inner transformation produces m → m and Dµ →
Dµ + pµ, and is the one used to arrive to the symbols
method formula. Now, explicit computation gives [16]

m̄ = m − D̂µm∂p
µ +

1
2!

D̂νD̂µm∂p
ν∂

p
µ

− 1
3!

D̂αD̂νD̂µm∂p
α∂

p
ν∂

p
µ + · · · ,

D̄µ = pµ − 1
2!

Fνµ∂
p
ν +

2
3!

D̂αFνµ∂
p
α∂

p
ν

− 3
4!

D̂βD̂αFνµ∂
p
β∂

p
α∂

p
ν + · · · (62)

As usual D̂µX stands for [Dµ,X], the chiral covariant deriva-
tive of X. The operator ∂p

µ denotes the derivative with re-
spect to the pµ dependence. It acts by taking the deriva-
tive of everything to its right (or to its left, by parts). The
point of doing this is that the operators ∂µ (derivative
with respect to xµ) appear only through D̂µ and so

6 Our notation will be as follows: pµ is purely imaginary;
however,

∫
ddp denotes the standard integration on Rd and p2

denotes −pµpµ.

(i) gauge covariance is manifest and
(ii) the integrand is just a function of x (rather than a
pseudo-differential operator as f(m,D)). This last fact al-
lows one to write

〈x|f(m,D)|x〉 =
∫

ddp

(2π)d
f(m̄, D̄), (63)

where f(m̄, D̄) is a matrix valued function of x.
In our case the application of this method amounts to

replacing (56) by

δW−[v,m] =
∫

ddxtr
[
γ5δ v/

∫
ddp

(2π)d
1

D̄/ +m̄

]
, (64)

Note that tr refers to Dirac and flavor spaces here.
The calculation proceeds as follows. The formula (64)

is expanded in the number of covariant derivatives, or
equivalently in the number of Lorentz indices carried by
D̂µ and Fµν . At leading order the term with d − 1 spa-
tial indices is selected. The derivatives with respect to pµ

are carried out. The Dirac trace is taken. This produces
a Levi-Civita pseudo-tensor and differential geometry no-
tation can be used. Note that terms with two or more
∂p

µ in m̄ and D̄µ cancel, since the corresponding indices
are symmetrized. Next, the m are indexed according to
Convention 3, thereby becoming c-numbers. This allows
one to carry out the momentum integrations straightfor-
wardly; the integration formulas of [1] apply.

A technical detail is that, computationally, the Dirac
algebra is slightly alleviated by rewriting (56) as

δW−[v,m]

=
∫

ddxtr
[
〈x|γ5δ v/

1
(D/ −m)(D/ +m)

(D/ −m)|x〉
]

= −
∫

ddxtr

[
〈x|γ5δ v/

1

−D2
µ +m2− D̂/m − 1

2σµνFµν

×(D/ −m)|x〉
]
. (65)

The formulas in (62) define a similarity transformation
[16], so the replacements m → m̄ and Dµ → D̄µ apply
here too.

Let us illustrate this procedure for the two-dimensional
case. Applying the replacements m → m̄ and Dµ → D̄µ in
the second of (65), and retaining terms with at most one
covariant derivative, yields

δW−
d=2[v,m]

= −
∫

d2xd2p

(2π)2
tr

[
γ5δ v/

1

∆− D̂/m − {m, D̂µm}∂p
µ

(p/ −m)

]

= −
∫

d2xd2p

(2π)2
tr
[
γ5δ v/

1
∆

(
D̂/m + {m, D̂µm}∂p

µ

)
× 1

∆
(p/ −m)

]
, (66)

where we have defined ∆ = p2 + m2 (not to be confused
with the operator ∆ introduced in (19)). The formula is
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already ultraviolet convergent without further renormal-
ization. This was to be expected since the chiral covariant
current is unique and thus free from ultraviolet ambigui-
ties. Using the formulas

∂p
µ

1
∆

=
2pµ

∆2 , γ5γµγν → −η2εµν , pµpν → −p2

2
δµν ,

(67)
the expression becomes

δW−
d=2[v,m]

= −2η2

∫
d2p

(2π)2
tr
[
δv
(
1
∆

m′ m
∆

− p2 1
∆2 {m,m′} 1

∆

)]
= 2η2

∫
d2p

(2π)2
tr
[(

m2

∆1∆2
− p2 m1 +m2

∆2
1∆2

)
m′δv

]
, (68)

where we are already using the notation of differential
forms, and m′ = D̂m. The trace no longer includes Dirac
space. The integration over momenta can be done using
the formulas in [1] and the result in (59) follows.

The calculation in four dimensions is similar and yields

δW−
d=4[v,m]

= 4η4

∫
d4p

(2π)4
tr
[(

m3

∆1∆2∆3∆4
+

p2

2

(
m1 − m3

∆2
1∆2∆3∆4

− m2 +m3

∆1∆2
2∆3∆4

− m3 +m4

∆1∆2∆3∆2
4

))
m′3δv

+
(

m1

∆1∆2∆3
− p2

2

(
m1 − m2

∆1∆2
2∆3

+
m1 +m3

∆1∆2∆2
3

))
Fm′δv

+
(

m1

∆1∆2∆3
− p2

2

(
m1 +m2

∆1∆2
2∆3

+
m1 +m3

∆1∆2∆2
3

))
m′Fδv

]
.

(69)

Integration over momentum yields the results quoted in
(B3). It can be noted that the integrands in (68) and (69)
are not unique, due to integration by parts in momentum
space. On the other hand, their integrals, the functions A,
are unambiguous.

4 The effective action

Following the strategy outlined above, we should now con-
sider the most (or, at least, a sufficiently) general effective
action functional in the pseudo-parity odd sector and at
leading order in the covariant derivative expansion, con-
sistent with Lorentz and chiral symmetries. This will be
done by writing the effective action as

W−[v,m] = ΓgWZW[v,m] +W−
c [v,m]. (70)

The functional ΓgWZW[v,m], an extended gauged Wess–
Zumino–Witten (gWZW) action, is chosen in order to re-
produce the correct chiral anomaly. The extension refers
to the fact that it goes beyond the chiral circle constraint.
Once the anomaly is saturated, the remainder will be chi-
ral invariant and can be adjusted in order to reproduce the
known current. This chiral invariant remainder is denoted
by W−

c [v,m].

4.1 The extended gauged Wess-Zumino-Witten action

As is well known (see AppendixA), the ordinary gauged
WZW functional ΓLR[vL, vR, U ] reproduces the correct
chiral anomaly (in the LR version). Two essential proper-
ties of this result are
(i) that it follows solely from assuming the transformation
property U → Ω−1

L UΩR, and no other algebraic proper-
ties on U(x), and
(ii) the infinitesimal chiral variation of ΓLR[vL, vR, U ] (i.e.
the anomaly) depends on the gauge fields vL,R but not
on U . In view of this, we can use mLR instead of U in
order to reproduce the anomaly. The antisymmetry under
pseudo-parity conjugation can be reestablished using the
fact that this conjugation commutes with chiral transfor-
mations. Therefore, the following functional serves as the
extended gauged Wess–Zumino–Witten (gWZW) action:

ΓgWZW[v,m] =
1
2
ΓLR[vL, vR,mLR]− 1

2
ΓLR[vR, vL,mRL].

(71)
In this functional the two fields mLR and mRL are not
mixed. This is not a property of the full effective action,
as is already clear from the form of the effective current
computed in the previous section.

In order to write this functional using our conventions,
let us consider the contribution of the (ungauged) WZW
term in two dimensions (cf. (A13) setting v to zero); we
have

ΓWZW,d=2[m]

= −1
6

〈(
1

mLR
dmLR

)3

−
(

1
mRL

dmRL

)3
〉

. (72)

This can be rewritten as

ΓWZW,d=2[m] =
〈

−1
3
R3
〉

. (73)

The meaning of the symbol 〈 〉 was given in (3). We have
introduced the 1-form R = (1/m)dm, and Conventions
1 and 2 apply. Note that, consistently with m−1m = 1,
(m−1)LR = m−1

RL and (m−1)RL = m−1
LR. More generally, in

d dimensions

ΓWZW[m] =
〈

− 1
d+ 1

Rd+1
〉

. (74)

As usual, in ΓWZW[m] the integration takes place on a
d + 1-dimensional disk with the d-dimensional spacetime
as boundary. It is essential that the integrand is a closed
form, so that the result does not depend on topologically
small deformations of the d + 1-dimensional disk. This
property follows from dR = −R2 and the cyclic prop-
erty. On the other hand the normalization is such that
ΓWZW[m] changes by integer multiples of 2πi under large
deformations of the disk; this holds whenm is on the chiral
circle and the difference between tr(Rd+1) on and off the
chiral circle is an exact form. (We are assuming through-
out that the fields mLR(x) and mRL(x) are nowhere sin-
gular, so any configuration can be deformed to one on the
chiral circle.)
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The full gauged functional in zero, two and four di-
mensions takes the form

ΓgWZW,d=0[v,m] = 〈−Rc − 2v〉 = 〈−R〉 ,
ΓgWZW,d=2[v,m]

=
〈

−1
3
R3

c + (Rc + Lc)F + 2vF − 2
3
v3
〉

=
〈

−1
3
R3 − (R+ L)v − mvm−1v

〉
, (75)

ΓgWZW,d=4[v,m] =
〈

−1
5
R5

c + (R3
c + L3

c)F

−2(Rc + Lc)F2 − RcFm−1Fm − LcFmFm−1

−4vF2 + 2v3F − 2
5
v5
〉

=
〈

−1
5
R5 − (R3 + L3)v +

1
2
(Rv)2 +

1
2
(Lv)2

+R2vm−1vm + L2vmvm−1

+Rm−1vmdv + Lmvm−1dv
+(R+ L)v3 + Rvm−1vmv + Lvmvm−1v
+(R+ L+m−1vm +mvm−1){v,dv}
+mvm−1v3 +m−1vmv3 +

1
2
(mvm−1v)2

〉
.

The functional ΓgWZW[v,m] corresponds to the LR ver-
sion of the action (as opposed to the VA version). In these
formulas we have introduced the following 1-forms:

R = m−1dm = −dm−1m,

L = mdm−1 = −dmm−1 = −mRm−1, (76)

Rc = m−1D̂m = R+m−1vm − v = m−1m′,

Lc = mD̂m−1 = −D̂mm−1 = L+mvm−1 − v
= −mRcm−1 = −m′m−1.

Rc and Lc are covariant under chiral gauge transforma-
tions.

The functional ΓgWZW[v,m] has been written in two
different forms in (75). In the first version all terms in the
integrand are d + 1-forms. This version shows explicitly
that the pieces which break chiral symmetry can be writ-
ten as an m-independent polynomial (in fact, this polyno-
mial is just the correctly normalized Chern–Simons term
in d+1 dimensions). This guarantees that the correspond-
ing chiral anomaly will also be an m-independent polyno-
mial. Technically, such a piece looks like an ordinary coun-
terterm which could be removed from the effective action,
leaving a chiral invariant action. Of course, this procedure
would be incorrect, since this piece, as well as the remain-
der, is not a separately closed form. Note that the d + 1
component of v does not really appear in the functional
(first version) since it cancels identically (this is easily seen
in the 0-dimensional case). In the second version, all con-
tributions in the integrand, except for the WZW term,
are d-forms. In this version the chiral symmetry is less
obvious, but it is closer to an ordinary d-dimensional La-
grangian.

Under the mirror transformation introduced in the pre-
vious section, the terms which are d-forms are odd,
whereas those written as d+1-forms are even. Using R →
L, Rc → Lc, etc., one has, for instance,

〈RcFm−1Fm〉 → 〈mFm−1FLc〉 = 〈LcmFm−1F〉
= −〈mRcFm−1F〉 = +〈RcFm−1Fm〉. (77)

To finish this section, let us comment on the possi-
bility of writing the functional ΓgWZW[v,m] as a d-form.
This has already been done for the gauged terms. The
question is whether the WZW term ΓWZW[m], (74), can
also be written as a d-form in terms of m. In Sect. 2.2
this was done for ΓWZW[U ]. The same formula does not
directly apply, because m behaves differently under the
cyclic property, namely, it is odd, whereas U is even. In-
deed, if we try to use the same method, we can see that
it fails, since any deformation of m into some m(t) with
m(0) = 1 is in conflict with the condition that the ex-
pressions must be even functions of m, for consistency. A
possibility is to go back to (71) (with v = 0) and observe
that ΓWZW[mLR] and ΓWZW[mRL] are invariant under the
replacements mLR → M−1

LRmLR and mRL → M−1
RLmRL,

where MLR and MRL are spacetime constants. Defining
the new symbol M by (M)LR = MLR and (M)RL = MRL,
the WZW term can be written as

ΓWZW[m] = ΓWZW[U ], U = M−1m. (78)

m and M are odd under the cyclic property, whereas M−1m
is even; therefore the formulas derived in Section 2.2 apply
directly.

4.2 The chiral invariant remainder

Using integration by parts, the most general functionals
consistent with chiral invariance and Lorentz invariance
(and at leading order in the derivative expansion) are of
the form7

W−
c,d=2[v,m] =

〈
N(m1,m2)(D̂m)2

〉
:=
〈
N12m′2〉 ,

W−
c,d=4[v,m] =

〈
N1234m′4 +N123m′2F

〉
. (79)

A comment is in order here. We have already argued above
that the current uniquely determines the effective action.
Therefore, it is not strictly necessary to deal with the most
general class of chiral invariant functionals. Any class of
functionals can be used, provided that it happens to con-
tain the correct W−

c [v,m]. The reason why the form in
(79) is sufficiently general is not entirely straightforward,
since one could imagine terms of the form 〈N1F〉 in two
dimensions, or 〈N12F2〉 in four dimensions. In Sect. 5.6 we

7 W −
c [v, m] vanishes in 0 dimensions. An easy calculation

shows that (choosing η0 = 1) W [v, m] = − log(mLR) and thus
ΓgWZW[v, m] is the full result in this case. In addition, the
most general form of W −

c would be
〈
f(m2)

〉
, but f has to be a

constant due to scale invariance, and hence it vanishes in the
pseudo-parity odd sector.
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show that those terms are in fact redundant. On the other
hand, far more general chiral covariant terms can be de-
vised. In (79) we have imposed that the functional must
be an analytical function of m and D. More general func-
tionals exist if this condition is lifted. However, the ana-
lytical form is sufficient for the effective action functional.
Note that the analytical form comes out automatically for
the effective current, as a result of the calculation. These
more general chiral covariant functionals are discussed in
Sect. 5.6.

Let us discuss which restrictions exist on the functions
N in W−

c [v,m]. The cyclic property implies

N12 = N21, N1234 = N2341. (80)

(That is, N(m1,m2) = N(m2,−m1), etc.) This already
implies “consistency” (i.e., the functions N should be even
under m → −m). We have as a byproduct

N12 = N12, N1234 = N1234, N123 = N123. (81)

Mirror symmetry requires

N12 = −N21, N1234 = −N4321, N123 = −N321. (82)

Note the different nature of the constraints implied by
the cyclic property and mirror symmetry. Mirror symme-
try is a property of our particular functional W−

c [v,m],
and it is perfectly possible to write non-null terms vio-
lating this symmetry. On the other hand, the cyclic sym-
metry is automatic; any function N12 can be decomposed
under the group generated by 12 → 21, and only that com-
ponent satisfying N12 = N21 can have a non-vanishing
contribution to the functional. Thus (80) expresses our
choice of working with this relevant component only.

Dimensional counting implies that N12 and N123 have
dimensions of [m−2], and N1234 of [m−4]. In addition, the
functions N must be regular as two or more arguments
coincide up to a sign.

It is important to note that the functions N in four di-
mensions are not unambiguously determined by the func-
tional itself, due to integration by parts. This follows from
the identity

0 = −1
3

〈
D̂
(
H123m′3)〉

=
〈

−1
3
(∆H)1234m′4 + (m1 +m3)H123m′2F

〉
. (83)

The operator ∆ was defined in (19) and the identity D̂2m
= [F,m] has been used. In addition, the cyclic property
has been assumed on H123. For subsequent reference we
give the cyclic property and mirror symmetry conditions
on H123:

H123 = −H123 = −H231 = −H321. (84)

The identity in (83) implies that there is an ambiguity in
the definition ofN123, since it can always be augmented by
(m1 +m3)H123 with arbitrary H123 subjected to the con-
ditions just quoted, and similarly for N1234. (Note that
(∆H)1234 does not directly have the cyclic property as-
sumed for N1234 – it has to be symmetrized.)

4.3 Results

First, we will need to compute the contribution of ΓgWZW
[v,m] to the effective current. In two dimensions, a first
order variation with respect to v yields

δΓgWZW,d=2[v,m] = 〈(−Rc−Lc−2v)δv〉 (δm = 0). (85)

Two contributions to the consistent current are identified
which correspond to the covariant contribution and the
counterterm in (35):

JWZW
v,c,d=2 = −Rc − Lc, Pd=2(v) = −2v. (86)

Similarly, in four dimensions

JWZW
v,c,d=4 = −R3

c − L3
c + 2{Rc + Lc,F} − m{Rc,F}m−1

− m−1{Lc,F}m,

Pd=4(v) = 4{v,F} − 2v3. (87)

(The same polynomials P(v) would be obtained with any
choice of ΓgWZW[v,m], since they are completely fixed by
the chiral anomaly.)

The contribution of W−
c [v,m] to the current is of

course purely covariant and it can be read off from

δW−
c,d=2[v,m] = 〈−2(m1 +m2)N12m′δv〉 ,

δW−
c,d=4[v,m]

=
〈
(−(∆N)1234 − 4(m1 +m4)N1234)m′3δv

+
(
(m1 − m2)N123 − (m1 +m3)N231

)
Fm′δv

+
(
(m2 − m3)N321 + (m1 +m3)N213

)
m′Fδv

〉
. (88)

In these formulas, the cyclic property has explicitly been
assumed for the functions N12 and N1234. The operator ∆
was defined in (19):

(∆N)1234 =
N134 − N234

m1 − m2
− N124 − N134

m2 − m3
+

N123 − N124

m3 − m4
.

(89)
Collecting the different contributions to the covariant

current in (86), (87) and (88), and comparing with the
definition of the functions A in (36), the following relations
are derived:

A12 = − 1
m1

+
1

m2
− 2(m1 +m2)N12,

A123 =
1

m1
+

2
m2

− 2
m3

− m1

m2m3
+ (m1 − m2)N123

− (m1 +m3)N231,

A1234 = − 1
m1m2m3

+
1

m2m3m4
− (∆N)1234

− 4(m1 +m4)N1234. (90)

The terms containing N are those coming from W−
c

[v,m], whereas the explicit terms are those coming from
ΓgWZW[v,m]. In these relations the N ’s are the unknown.
It is important to note that these relations have to be
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augmented with the cyclicity constraints, (80), since they
have explicitly been used in their derivation.

Let us consider the two-dimensional case. For N12 one
obtains

N12 = −1
2

1
m1 +m2

(
A12 +

1
m1

− 1
m2

)
(91)

= − m1m2

m2
1 − m2

2

(
log(m2

1/m
2
2)

m2
1 − m2

2
− 1

2

(
1

m2
1
+

1
m2

2

))
. (92)

It is worth noticing that the correct cyclic property for
N12, namely, N12 = N21, is verified, but this is not an
automatic consequence of (91). This poses a severe re-
striction on the a priori admissible functions A12, if they
should derive from an effective action with the correct
Lorentz and chiral symmetries. In addition the function
N12 is finite, i.e. regular at m2

1 = m2
2. Again, this prop-

erty does not follow automatically from the finiteness of
A12. On the other hand, scale and mirror symmetries are
automatic in N12 from the corresponding symmetries in
A12.

Another comment is that in the first of (90) (similar re-
marks apply to the four-dimensional formulas) the WZW
contribution to A12 cannot be reabsorbed into the con-
tribution coming from W−

c [v,m] by means of a suitable
redefinition of the function N12. If this were the case, we
would have that the covariant current, A12, is also con-
sistent (it would derive from a certain W−

c [v,m]). Techni-
cally, the reason is that such a function N12 would violate
the cyclic property constraint. (In addition, it would not
be finite at m2 = −m1.) Thus, in this formalism the non-
integrability of the covariant current, which necessarily
implies the existence of a chiral anomaly, translates into
a breakdown of the cyclic property.

In summary, the function N12 in (92) inserted in W−
c

[v,m] in (79) plus the extended gauged WZW term in
(75) provides the full functional for the leading order of
the pseudo-parity odd component of the effective action
in two dimensions.

Let us now turn to the four-dimensional case. Unfor-
tunately, this case is more involved, mainly because of the
presence of ambiguities in the functions N introduced by
integration by parts. These ambiguities do not affect the
functional W−

c [v,m] itself.
Mirror symmetry ofN123 automatically implies Ā123 =

Ā132, which can thus be understood as a consequence of
mirror plus Lorentz symmetries (chiral symmetry is not
required). The full permutation symmetry of Ā123 and
Ā1234 would not follow if N123 = N1234 = 0 and so it
cannot be understood in this way.

Clearly, N1234 is uniquely determined by the formulas
once A1234 and N123 are known. However, N123 is not
unambiguously determined from A123. In turn, this puts
a restriction on the possible A123, namely,

(m2 − m3)A123 + (m1 +m3)A231 + (m2 − m1)A312 = 12,
(93)

which is verified by the true function A123. This ambiguity
was noted above, see (83). It is verified that the modifica-
tion introduced by H123 exactly cancels in the right-hand

side of (90). This serves as a check of these formulas. This
means that the functions N123 and N1234 are ambiguous,
but not the functional W−

c [v,m] itself. This is consistent
with the fact that the current completely fixes the effec-
tive action functional if the correct chiral transformation
is assumed.

A particular solution for the functional N123 is given
by

N0
123 =

1
3

(
A123

m1 − m2
+

A312

m2 − m3

)
(94)

− 1
(m1 − m2)(m2 − m3)

(
m1

m2
+

m2

m1
− m2

m3
− m3

m2

)
.

This is easily verified by substitution. The associated func-
tion N0

1234 is immediately obtained from (90). Besides the
trivial mirror symmetry and scale invariances, it is verified
that N0

1234 possesses the correct cyclic symmetry. Again
this is a highly non-trivial check of the functions A123
and A1234. However, the functions N0

123 and N0
1234 are not

directly acceptable, since they fail to be finite in the co-
incidence limit, namely, when m1 = m2 or m2 = m3. This
implies that another solution has to be chosen by tak-
ing an appropriate function H123. (Note that the previous
checks are preserved by this operation.)

To find an acceptable solution it is convenient to work
with a reduced version of the function N123, namely

N̂123 = (m1 − m2)(m2 − m3)N123. (95)

Consistency and mirror symmetry of N123 translate into

N̂123 = N̂123 = −N̂321. (96)

On the other hand, the condition of finiteness of N123 at
m1 = m2 corresponds to

N̂113 = 0. (97)

Due to mirror symmetry this immediately implies N̂122 =
0 and, thus, finiteness of N123 at m2 = m3 too. This finite-
ness condition is violated by N̂0

123.
Likewise, for the function H123 controlling the ambi-

guity we define its reduced version by

Ĥ123 = (m1 − m2)(m2 − m3)(m1 +m3)H123. (98)

Consistency, the cyclic property and mirror symmetry of
H123 in (84) translate into

Ĥ123 = Ĥ123 = Ĥ231 = −Ĥ321. (99)

(This is equivalent to saying that the function Ĥ123 is com-
pletely antisymmetric under permutation of its arguments
and even under m → −m.)

In terms of the reduced functions, the ambiguity cor-
responds to the fact that N̂123 and N̂123 − Ĥ123 produce
the same current A123. In view of this, our strategy is to
find an Ĥ123 such that Ĥ113 = N̂0

113, so that

N̂123 = N̂0
123 − Ĥ123 (100)
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fulfills the finiteness condition, (97). This can be done as
follows. Although the function N̂0

123 does not vanish at
m1 = m2, it is finite and satisfies

N̂0
123 = N̂0

123, N̂0
111 = 0, N̂0

113 = −N̂0
113. (101)

The first relation is consistency. The second one comes
from mirror symmetry, and the last one follows from finite-
ness of A123 (this is more simply verified from (90)). These
relations imply that the function

Ĥ123 =
1
2

(
−m3

m1
N̂0

112 +
m1

m2
N̂0

223 − m2

m3
N̂0

331 − m3

m2
N̂0

221

+
m1

m3
N̂0

332 +
m2

m1
N̂0

113

)
(102)

satisfies the requirements in (99). In addition,

Ĥ113 =
1
2

(
−m3

m1
N̂0

111 + N̂0
113 − m1

m3
N̂0

331 − m3

m1
N̂0

111

+
m1

m3
N̂0

331 + N̂0
113

)
= N̂0

113; (103)

therefore, the function N̂123 defined as N̂0
123 − Ĥ123 au-

tomatically satisfies N̂113 = 0 and thus it yields a finite
N123. Finiteness of the corresponding N1234 also follows
automatically: because N123 and A1234 are finite, (90)
implies that the N1234 is also finite except perhaps at
m1 = −m4; however, this follows from the cyclic property,
N1234 = N4123 and the finiteness of N1123.

Let us summarize the result. The acceptable N123 is
obtained as follows: from A123 (B3), one obtainsN0

123 (94),
then N̂0

123 (95) and Ĥ123 (102). This gives N̂123 (100) and
N123 (95). Finally, N1234 follows from (90). The explicit
resulting functions are displayed in Appendix B.

It can be noted that in addition to the redefinition from
N0

123 to N123 to achieve finiteness, further redefinitions,
by suitable finite functions H123, can be made to simplify
the final form of N123 and N1234. In practice, we have not
been able to achieve a greater simplification. Certainly the
functionsN123 andN1234 cannot be much simpler than the
functions A123 and A1234, which are free from ambiguities;
thus, no simple form is to be expected for the functions
N .

As we have seen in Sect. 2.2, the WZW term has a
simple form when written as a d+ 1-dimensional integral
but looks complicated in terms of d-forms. One can wonder
whether this is also the case for W−

c [v,m]. Applying the
operator D̂ to its integrand, W−

c [v,m] can be written as
a d + 1-form; however, no simplification occurs. Again, a
large simplification would have been in contradiction with
the unambiguous form of the effective current.

5 Further comments and results

5.1 The chiral circle constraint

The previous calculations are completely general as re-
gards the chiral group and the external field configura-
tions, since no assumption has been made on the algebraic

properties in flavor space. Let us now discuss the form of
the functional on the chiral circle. A field configuration
(v,m) is on the chiral circle when mLR(x) = MU(x) and
mRL(x) = MU−1(x) where M is a constant c-number.
By unitarity U must be a unitary matrix, but in practice
we will only use that U is nowhere singular. Due to di-
mensional counting M cannot appear in W−[v,m] (since
we are considering the leading term only and all dimen-
sions are already accounted for by the derivatives and the
gauge fields); thus we can take M = 1 and express the
chiral circle constraint as mLRmRL = 1 or equivalently as
m2 = 1.

As is well known, on the chiral circle the leading term
of W−[v,m] is saturated by the gauged WZW action ΓLR
[v, U ]. This comes about because it is possible to chi-
rally rotate the configuration by U to bring it to the form
mLR = mRL = 1 and so W−[v,m] is given by ΓLR[v, U ]
plus W−

VA[v,m = 1] (see AppendixA). Thus the statement
is equivalent to saying that the leading term of W−

VA[v,m]
vanishes when mLR = mRL = 1. This follows because
the possible vector gauge invariant terms constructed out
of vL and vR of dimension d vanish identically. (Vector
gauge invariance is the remaining chiral invariance com-
patible with the condition mLR = mRL = 1, and it must
be preserved, since all the anomaly is saturated by the
gauged WZW term.)

The fact that, on the chiral circle at leading order
in the derivative expansion, W−[v,m] = ΓLR[v, U ] is of
course contained in our general formulas. Actually, a
stronger statement can be deduced, namely, the leading
order of W−[v,m] is saturated by ΓLR[v, U ] whenever

mLR(x) = M(x)U(x), mRL(x) = M(x)U−1(x), (104)

where M(x) is a c-number but not necessarily a constant.
(Note that this class of configurations is closed under chi-
ral transformations.) To show this, let us define the sym-
bol M by (M)RR = (M)LL = M and U by (U)LR = U
and (U)RL = U−1. (Note that U2 = 1 and so U = U−1.)
This allows us to use Convention 2: m = MU and m′ =
dMU+MU′.

Consider first the extended WZW term. Clearly, in
ΓgWZW[v,m] all dependence on M without derivatives can-
cels, by simple dimensional counting. Likewise, all
terms with two or more dM also cancel trivially since dM
is a c-number and (dM)2 = 0. Finally, the terms linear
in dM can be shown to cancel too, by using (recall that
U = U−1)

Rc = RU
c + RM , Lc = RU

c − RM , RU
c = UU′,

RM = M−1dM. (105)

For instance R5
c = (RU

c )
5 + (RU

c )
4RM and L5

c = (RU
c )

5 −
(RU

c )
4RM ; thus R5

c + L5
c = 2(RU

c )
5. Therefore, when m =

MU,
ΓgWZW[v,m] = ΓLR[v, U ]; (106)

this is the same as the chiral circle result.
Let us now show that W−

c [v,m] vanishes identically. In
fact, this holds not only for the true functional W−

c [v,m]
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but also for any other finite functional with the correct
symmetries. Therefore, only general properties of the func-
tions N are needed in the proof.

Consider first the term with N12. Due to scale invari-
ance

N(m1,m2) =
1

M2N(U1,U2). (107)

Because U2 = 1, the function N(U1,U2) is completely
equivalent to one where each of the U1,2 is raised to the
first power at most:

N(U1,U2) = a+ bU1 + cU2 + dU1U2, (108)

where a, b, c, d are some constants (these constants exist
since N12 is finite in the coincidence limit). However, con-
sistency requires that b = c = 0 (N12 is an even function
of m). Further, mirror symmetry requires a = d = 0 too,
and W−

c [v,m] vanishes identically in two dimensions for
configurations of the form m = MU.

In four dimensions, scale invariance, consistency and
the cyclic property imply

N(m1,m2,m3,m4)

=
1

M4 (a+ b(U1U2 + U2U3 + U3U4 − U4U1)) (109)

for some constants a and b. However, mirror symmetry
requires a = b = 0. Thus, there is no contribution from
〈N1234m′4〉.

The term 〈N123m′2F〉 is slightly more complicated. In
this case, scale invariance, consistency and mirror symme-
try imply

N(m1,m2,m3) =
a

M2 (U1 − U3)U2. (110)

The constant a needs not vanish (in fact, a = −1/2 for
the true functional). Nevertheless, a straightforward cal-
culation using m′ = dMU + MU′, UU′ = −U′U and that
M is a c-number, shows that this contribution vanishes as
well.

It is also worth point out that on the strict chiral circle,
i.e. M constant, W−

c [v,m] can be shown to vanish without
assuming mirror symmetry.

Another remark is that the previous statements also
hold for any Abelian theory, i.e. when all matrices are c-
numbers in flavor space. This is because in this case mLR
and mRL can certainly be written as in (104) with M(x)
a c-number, so the previous results apply.

After all these null results, one could wonder whether
the chiral invariant remainder is not actually identically
zero, although this is not obvious due to the notation.
We have explicitly verified that this is not the case using
a two-flavor model in two dimensions without accidental
symmetries.

5.2 The effective density

In this subsection we give explicit formulas for the effec-
tive density J−

m introduced in (34) as the variation of the

effective action with respect to m. The general form of the
densities is

J−
m,d=2 = B123m′2 +B12F,

J−
m,d=4 = B12345m′4 +B1234m′Fm′ +B′

1234m
′2F

+ B′′
1234Fm′2 +B′

123F
2. (111)

For consistency, the functions B are all odd under m →
−m. In addition, mirror symmetry implies

B12 = B21, B123 = B321, B′
123 = B′

321,

B1234 = B4321, B′
1234 = B′′

4321, B12345 = B54321.(112)

The effective density can be computed from scratch,
by the same method used in Sect. 3.2 for the effective cur-
rent. Within our approach, the direct calculation of the
density is harder than for the current, because they are of
higher order (J−

m is a d-form whereas J−
v is a d − 1-form).

A better procedure is to obtain the effective density as the
variation of the effective action, which has already been
computed. As we noted, the consistent effective density is
also covariant.

An explicit variation of ΓgWZW[v,m] and W−
c [v,m] in

two dimensions yields

B12 = −2(m1 − m2)N12 +
1

m1
+

1
m2

,

B123 = 2
(
N13 − N23

m1 − m2
− N12 − N13

m2 − m3
+

N23 − N12

m3 +m1

)
− 1

m1m2m3
. (113)

The terms with N are those coming from W−
c [v,m]; the

other come from ΓgWZW[v,m].
In four dimensions,

B′
123 = −(m1 − m2)N312 − (m2 − m3)N231 − 2

m3

− 1
m2

− 2
m1

− m2

m1m3
,

B1234 = 4(m2 − m3)N1234 − N312 − N412

m3 − m4

+
N341 − N342

m1 − m2
+

N342 − N312

m4 +m1

+
1

m1m3m4
+

1
m1m2m4

,

B′
1234 = −4(m3 − m4)N1234 +

N413 − N423

m1 − m2

− N412 − N413

m2 − m3
+

N423 − N123

m4 +m1

+
1

m1m2m4
+

1
m1m2m3

,

B12345 = 4
(
N1345 − N2345

m1 − m2
− N1245 − N1345

m2 − m3

+
N1235 − N1245

m3 − m4
− N1234 − N1235

m4 − m5

+
N2345 − N1234

m5 +m1

)
− 1

m1m2m3m4m5
. (114)
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There is an alternative way to obtain the density,
which is simpler and also serves as a check, namely by
using the anomaly equation. This is (34) when the varia-
tions are associated to an infinitesimal chiral rotation, see
(8),

D̂J−
v + {J−

m,m} = A, (115)

where A is the consistent chiral anomaly (defined so that
δW−

LR[v,m] = 〈Aα〉 is the left-hand side of (A1)). Note
that J−

v is the consistent current. The contribution of the
counterterm current P(v) cancels the chiral symmetry break-
ing terms from the anomaly. This yields the following for-
mulas for the density

B12 =
1

m1 +m2
(4 + (m1 − m2)A12),

B123 = − 1
m1 +m3

(∆A)123,

B′
123 = − 1

m1 +m3
(12− (m2 − m3)A123

+ (m1 − m2)A321),

B1234 = − 1
m1 +m4

(
A134 − A234

m1 − m2
+

A321 − A421

m3 − m4

+ (m2 − m3)A1234

)
,

B′
1234 = − 1

m1 +m4

(
− A431 − A432

m1 − m2
+

A421 − A431

m2 − m3

− (m3 − m4)A1234

)
,

B12345 = − 1
m1 +m5

(∆A)12345. (116)

It can be verified that these expressions coincide with
those in (113) and (114), and the possible ambiguities in-
troduced by the functions N are explicitly removed.

As in the case of the effective current we can define a
set of associated functions as follows

B12 = B̄12, B123 = B̄123, B′
123 = B̄′

123, (117)

B1234 = B̄1234, B′
1234 = B̄′

1234, B12345 = B̄12345.

(The rule is to flip the signs of the arguments at the right
of each operator that is an odd-order differential form,
in practice m′.) Once again the functions B̄ so defined
turn out to have the property of being completely sym-
metric under permutation of their arguments, a property
already noted for the functions Ā of the effective current.
In two dimensions this property follows solely from the
general symmetries of the function N12; however, in four
dimensions this is not the case. Consistency and mirror
symmetry follows automatically in all cases from the cor-
responding properties of N123 and N1234. Invariance of
B̄′

123, B̄1234, and B̄′
1234 under general permutations (other

than mirror permutations) does not follow from the gen-
eral symmetries of N123 and N1234 as is already obvious

by setting these two functions to zero in (114). For B̄12345,
it can be shown that invariance under cyclic permutations
follows from general symmetries of N123 and N1234 but in-
variance under more general permutations does not. (Also
the complete symmetry of the functions Ā combined with
the formulas in (116) does not guarantee symmetry of the
functions B̄.) Therefore, the complete symmetry of the
functions B̄ in four dimensions is a specific property of
the true effective action functional. Since this property is
so general (it holds for effective currents and effective den-
sities and in all dimensions examined) it is likely that it
follows from the very definition of these currents rather
than being an accidental symmetry.

5.3 Vector-like reduction

Our conventions for the vector–axial (VA) notation are as
follows:

D =D/V + A/ γ5 + S + γ5P, (118)

where DV
µ = ∂µ+Vµ is the vector covariant derivative and

vR,L = V ± A, mLR = S + P, mRL = S − P. (119)

Strictly speaking a purely vector-like case would mean
vR = vL and mLR = mRL, or P = A = 0. For such
configurations there is no pseudo-parity odd component
of the effective action. Thus, presently, we will refer to the
case of vanishing pseudo-scalar field, P = 0, but not nec-
essarily vanishing axial field A by the terminology: vector-
like case. Of course, in this case it is preferable to work
with the VA version of the effective action, which is re-
lated to the LR version by subtracting an appropriated
m-independent counterterm (see AppendixA)

W−
VA[v,m] = W−

LR[v,m]− Pct[v]. (120)

The counterterm is such that W−
VA[v,m] is vector gauge

invariant and the anomaly affects only axial transforma-
tions. In this subsection we will denote W−[v,m] by
W−

LR[v,m] to emphasize that it is the LR version of the
effective action.

When P = 0, the most general form of the VA effec-
tive action (at leading order and in the pseudo-parity odd
sector) is

W−
VA,d=2[v,m] = 〈M12S

′A〉 , (121)

W−
VA,d=4[v,m] = 〈M123FV S′A+M ′

123S
′FV A

+ M1234S
′3A+M ′

1234S
′A3 +M ′′

123A
2FA

〉
,

where S′ = [DV , S], FV = D2
V and FA = {DV , A} and

the various M ’s are functions of S, i.e, M12 = M(S1, S2),
etc. Note that the symbol S, unlike m, is even under cyclic
permutations; thus, in particular there are no consistency
restrictions on the various functions M . Also there are no
cyclicity restrictions. On the other hand, mirror symmetry
is guaranteed provided that

M12 = − M21, M123 = −M ′
321, M1234 = −M4321,

M ′
1234 = −M ′

2143, M ′′
123 = −M ′′

321. (122)
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Not all these functions are unambiguously determined
by the functional itself due to the following identity (the
prime denotes the derivative with respect to DV )

0 =
1
3
〈
(G123A

3)′
〉
=
〈
G123A

2FA +
G134 − G234

S1 − S2
S′A3

〉
.

(123)
Here G123 is any function subjected to the cyclic property
restriction G123 = G231. If in addition mirror symmetry is
imposed, G123 must be a completely antisymmetric func-
tion under permutation of its arguments. This identity
introduces an ambiguity because of integration by parts
in M ′

1234 and M ′′
123.

Since W−
LR[v,m] has been computed previously, (120)

can be used to obtain W−
VA[v,m]. The contribution from

ΓgWZW[v,m] when P = 0 is easily obtained from (71).
This contribution combined with that coming from the
counterterm yields

W−
VA,WZW,d=2[v,m] =

〈−[S−1, S′]A
〉
,

W−
VA,WZW,d=4[v,m] =

〈
2FV [S−1, S′]A+ S−1FV S′A

−SFV S−1S′S−1A+ 2[S−1, S′]FV A − S′FV S−1A

+S−1S′S−1FV SA − (S−1S′)3A+ (S′S−1)3A
+[S−1, S′]A3 + S′S−1ASAS−1A − S−1S′AS−1ASA

−SAS−1AFA − S−1ASAFA +ASAS−1FA

+AS−1ASFA

〉
. (124)

By construction all terms breaking vector gauge invariance
have canceled.

The contribution coming from W−
c [v,m] is also easily

computed. To illustrate the method we will work out ex-
plicitly the two-dimensional case. From consistency, the
most general form of N12 is

N12 = n′
12 +m1m2n12, (125)

where n12 and n′
12 are functions of m2

1 and m2
2. (Mir-

ror symmetry further requires n′
12 to vanish but this will

not be enforced here.) Thus (expanding Convention 2 but
keeping Convention 1) yields〈

N12m′2〉 = 〈(n′
12 +m1m2n12)m′2〉 (126)

=
〈
n′

12m
′
RLm

′
LR + n12(mm′)2R

〉
. (127)

Now we can take P = 0, i.e., mLR = mRL = S and use
the formulas

m′
RL = S′ + {S,A}, m′

LR = S′ − {S,A}. (128)

(Note that the prime refers to DR,L in the left-hand side
and to DV in the right-hand side.) In addition, all argu-
ments m become S. This gives

W−
VA,c,d=2[v,m] = 〈n′

12(S
′ + {S,A})(S′ − {S,A})

+n12S1S2(S′ − {S,A})(S′ − {S,A})〉
= 〈−n′

12S
′{S,A}+ n′

12{S,A}S′ − n12S1S2S
′{S,A}

−n12S1S2{S,A}S′〉
=
〈−N12S

′{S,A}+N12{S,A}S′〉
= 〈−2N12S

′{S,A}〉 . (129)

The second equality follows from Convention 1, which
keeps only pseudo-parity odd terms. The last equality fol-
lows from the cyclic property of the trace. A useful obser-
vation is that, although the detailed expansion in (125) is
required in intermediate steps, the full function N12 can
be reconstructed, as in the third line above, by allowing
appropriate changes in the signs of its arguments (e.g.
N12)8.

In four dimensions, using

FR = FV +A2 + FA, FL = FV +A2 − FA, (130)

the result is

W−
VA,c,d=4[v,m]

=
〈
N123{S,A}S′(FV +A2)− N123S

′{S,A}(FV +A2)

+N123S
′2FA − N123{S,A}2FA − 4N1234S

′3{S,A}
+4N1234S

′{S,A}3
〉
. (131)

In this formula, the term S′2FA has to be integrated by
parts in order to conform to the standard form chosen in
(121).

The combination of the previous results from ΓgWZW
[v,m], W−

c [v,m] and Pct[v] gives

M12 = A12,

M123 = A123,

M1234 = A1234,

M ′
1234 =

1
S1

− 1
S2

+
S3

S2S4
− S4

S1S3
− (S2 + S3)N123

− (S1 + S4)N412

+ 4(S1 + S4)(S2 + S3)(S3 + S4)N1234,

M ′′
123 = −S1

S2
− S2

S1
+

S2

S3
+

S3

S2

− (S1 + S2)(S2 + S3)N123. (132)

In these formulas the functions A12, etc., are those of the
effective current in (36).

The ambiguity in the functions N123 and N1234 trans-
lates into an ambiguity in M ′

1234 and M ′′
123 of the form

G123 = −Ĥ123. On the other hand, exploiting the ambi-
guity in these functions allows us to write explicit expres-
sions in terms of the A’s, as follows:

M ′
1234 = −1

3
(S1 + S4)A143 − (S2 + S4)A243

S1 − S2

− 1
3
(S1 + S3)A143 − (S2 + S3)A243

S1 − S2

− (S1 + S4)(S2 + S3)A1234,

M ′′
123 =

1
3
(S1 + S2)A312 − 1

3
(S2 + S3)A132. (133)

8 The empirical rule is to flip the signs of the arguments at
the right of each A or FA. In addition there is a global minus
sign for each A or FA occupying an even position.
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Note that these functions differ from those in (132), al-
though, of course, they produce the same functional.

An alternative way to obtain the functions M is based
on reproducing the correct axial current. This method
yields (133) more directly. The procedure is straightfor-
ward, so we do not give details; however, it is worth notic-
ing that with our notation J−

v denotes simultaneously the
left and right currents and the vector and axial currents
(all of them associated to the LR version of the effective
action). The chiral currents are defined by

J−
v,R = (J−

v )R, J−
v,L = (J−

v )L, (134)

so that (consistently with Convention 1)

δW−
LR[v,m] =

1
2
〈J−

v,RδvR − J−
v,LδvL〉. (135)

On the other hand, the vector and axial currents are de-
fined by

δW−
LR[v,m] = 〈J−

V δV + J−
A δA〉. (136)

Thus
J−

V,A =
1
2
(J−

v,R ∓ J−
v,L) = J−

v . (137)

In the last equality we are using our conventions with the
proviso that J−

V and J−
A are pseudo-parity odd and even

quantities, respectively. (Of course the usual vector and
axial current are those associated to the VA version of the
effective action, so it still remains for us to pick up the
contribution from the counterterm Pct[v].)

5.4 The two-dimensional pseudo-parity odd effective
action from the anomaly

In this subsection we will point out a general property of
the effective action in the pseudo-parity odd sector, which
holds to all orders and for any gauge group and any space-
time dimension greater than zero, and we will show that
this property is sufficient to completely fix W−[v,m] at
leading order in two dimensions from the chiral anomaly.

The general property is that W−[v,m] vanishes identi-
cally when there are no gauge fields and one of the scalar
fields, say mRL, is a spacetime constant, that is,

W−[v,mLR,mRL] = 0, when v = 0, dmRL = 0.
(138)

To proof this statement, let us consider the variation of
W−[v,m] within this class of configurations when only
mLR is varied. Use of (52) yields

δW−[v,m] = −1
2
Tr
[
γ5

1
mLR− ∂/ m−1

RL ∂/
δmLR

]
= −1

2
Tr
[
γ5

1
mLR − m−1

RL∂
2
δmLR

]
= 0. (139)

The second equality holds due to dmRL = 0. The last
equality follows from trγ5 = 0 (except at d = 0, and

indeed the property does not hold in this case). There-
fore the value of W−[v = 0,mLR,mRL = constant] does
not depend on mLR. This value is zero as follows from
choosing mLR = mRL, since in this case the configura-
tion is unchanged under pseudo-parity conjugation and
the pseudo-parity odd component vanishes. Note that this
property is specific of the effective action functional and
does not derive from general symmetry properties of this
functional. From (70), it follows that within this class of
configurations

W−
c [v,m] = −ΓgWZW[v,m] (v = 0, dmRL = 0). (140)

All higher orders in the derivative expansion must vanish
separately, whereas the leading term of W−

c [v,m] must
cancel the extended gauged WZW term.

Next we will use this property to determine the chiral
covariant remainder in two dimensions. To do this let us
compute the two sides of (140) when v = 0, mRL = 1
(or any constant c-number) and mLR = µ (this is just a
change of name). Using (m−1dm)R = µ−1dµ, and
(m−1dm)L = 0, one finds

ΓgWZW[v,m] =
1
2
ΓLR[v = 0, U = µ]

=
1
2

〈
−1
3
(µ−1dµ)3

〉
=

1
2
〈
hWZW(µ1, µ2)dµ2〉 , (141)

where the function hWZW(z1, z2) was introduced in (26).
On the other hand, using only symmetry arguments

(including analyticity of the effective action functional)
the leading term ofW−

c [v,m] in two dimensions must have
the form given in (79) with

N(m1,m2) = m1m2n(m2
1,m

2
2), (142)

for some antisymmetric function n(z1, z2) to be deter-
mined. For the class of configurations selected above, and
using the fact that in this case m2

L = m2
R = µ, (mdm)R =

dµ, (mdm)L = 0, one finds

W−
c [v,m] =

1
2
〈
n(µ1, µ2)dµ2〉 . (143)

Comparing both calculations, it follows that n(z1, z2) =
−hWZW(z1, z2) and thus

N(m1,m2) = −m1m2hWZW(m2
1,m

2
2), (144)

which is indeed verified by the correct function N12 given
in (92).

The points to remark are:
(i) since the WZW term is completely determined by inte-
gration of the chiral anomaly, the function hWZW(z1, z2)
also follows from the anomaly;
(ii) although W−

c is considered for a particular case, this
is sufficient to determine the function N12 because no spe-
cial properties of µ (i.e. particular flavor groups) have been
assumed.
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In four dimensions this method is insufficient to fix
the effective action. The function N123 does not contribute
since F = 0 when we take v = 0. On the other hand, N1234
can be decomposed as

N1234 = n1234 +m1m2n
′
1234 +m2m3n

′
2341 +m3m4n

′
3412

−m1m4n
′
4123 +m1m3n

′′
1234 +m2m4n

′′
2341

+m1m2m3m4n
′′′
1234, (145)

where the various n’s are functions of m2. For configura-
tions with v = 0 and mRL = 1, only the last component
n′′′

1234 gives a contribution, hence all other components
remain undetermined by this procedure. The component
n′′′

1234 is fixed by imposing a cancellation with the contribu-
tion coming from ΓgWZW[v,m]. We have explicitly verified
this with our formulas. In passing, we note another unex-
pected property, namely, the component n1234 vanishes
identically, although this is not required by the general
symmetries of N1234. It seems to be a specific property
of the effective action functional (this statement depends
only of our choice of ΓgWZW[v,m]). The other components
do not vanish identically.

To finish this subsection, let us note that the same
observation and method described above can be adapted
to the VA version of the effective action. The fact that
W−

LR[v,m] vanishes when v = 0 and mRL is a constant,
(138), implies (making a chiral rotation to the case P = 0
and using the formulas in AppendixA) that

W−
VA[v,m] = −ΓWZW(U), when

vR,L = U±1/2dU∓1/2, mLR = mRL = U. (146)

This identity can then be used to determine the function
M12 in W−

VA[v,m] in two dimensions. A straightforward
calculation yields

M(z1, z2) =
4z1z2

z1 + z2
hWZW(z1, z2). (147)

This relation is verified by the correct functionM12 = A12.
Combining this formula and that in (144) yields

N(m1,m2) = −m2
1 +m2

2

4m1m2
A(m2

1,m
2
2), (148)

which is a non-trivial relation between the covariant cur-
rent, A12, and the covariant remainder, N12.

5.5 Further properties
of the extended gauged WZW action

The functional ΓgWZW[v,m] in (70) is required to repro-
duce the correct chiral anomaly, but otherwise it is a mat-
ter of choice. A different choice would be compensated
by a change in the chiral invariant remainder. Neverthe-
less, the concrete form proposed in (71) is the unique such
functional enjoying two further properties, namely,
(i) it does not mix mLR with mRL, and

(ii) it is invariant under the transformation m → m−1 (i.e.
mLR ↔ m−1

RL). The second property is manifest in (75) for
the gauged terms. For the WZW term it holds too:〈

Rd+1〉→ 〈
Ld+1〉 = 〈(−mRm−1)d+1〉

= − 〈mRd+1m−1〉
=
〈
Rd+1〉 . (149)

That ΓgWZW[v,m] is fully characterized by these two
properties can be seen after a detailed analysis: any other
such functional would differ by a chiral invariant contribu-
tion, of the same form as W−

c [v,m] in (79). The require-
ment of not mixing mLR and mRL only allows a〈R4

c〉 for
the term with N1234 (e.g., a piece m2 introduces a mixing,
and similarly mm′ or m′2), and such a term vanishes iden-
tically. For the term with N123, the most general form not
mixing mLR and mRL would be 〈aR2

cF + bL2
cF〉; however,

mirror symmetry requires b = −a and this in conflict with
invariance under m → m−1, which requires b = a.

As noted above, the property of not mixing mLR and
mRL does not extend to the full effective action. Let us
discuss the property of invariance under m → m−1. First
of all, note that it cannot be a symmetry of the effective
action beyond the leading term in the derivative expan-
sion, since it does not preserve the dimensional counting,
so our next comments refer to this leading term only (for
W− or the term with precisely d derivatives for W+).

On the chiral circle, the transformation m → m−1 is
a trivial symmetry (since m2 = 1). As we have just seen,
it is also a symmetry of the functional ΓgWZW[v,m] (on
or off the chiral circle). Remarkably, it turns out to be an
invariance of the leading term of W−[v,m] in zero and
two dimensions. In the zero-dimensional case this is ob-
vious since W−

c [v,m] vanishes. In two dimensions it is an
accidental symmetry which follows as an automatic con-
sequence of chiral and Lorentz invariance, plus scale in-
variance and mirror symmetry. Indeed, the most general
form of N12 consistent with scale invariance and mirror
symmetry is

N(m1,m2) =
1

m1m2
f(m1m−1

2 ), f(x) = −f(x−1). (150)

On the other hand, under the transformation m → m−1,
m′ → −m−1m′m−1 and so

N(m1,m2) → − 1
m2

1m
2
2
N(m−1

1 ,m−1
2 ) = N(m1,m2).

(151)
The same invariance is also automatic in the term with two
covariant derivatives in W+ in two dimensions (although
it fails in zero dimensions for W+). In four dimensions
such a transformation is not a symmetry of the leading
term ofW−[v,m], as can be seen using the explicit formula
of N123 in Appendix B or A123 for the effective current.

5.6 General form of the chiral invariant remainder

In Sect. 4.2 we have noted that the forms taken in (79)
for W−

c [v,m] in two and four dimensions are actually the
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most general ones that form those functionals. To show
this, let us begin by considering a functional of the form
〈N1F〉 in two dimensions. Using the identity

0 = 〈(f1m′)′〉 = 〈(∆f)12m′2 + f1m′′〉
= 〈(∆f)12m′2 + f1[F,m]〉
= 〈(∆f)12m′2 − 2mf1F〉, (152)

it follows that 〈N1F〉 can be reabsorbed in 〈N12m′2〉 by
taking f1 = −(1/2)N1.

In four dimensions, using m′′ = [F,m] and F′ = 0,
the most general form is that given in (79) augmented
with terms of the form 〈N ′

12F
2〉. However, due to mirror

symmetry

N ′
12 = −N ′

21, N ′
12 = (m1 − m2)n′′

12; (153)

that is, the function n′′
12 = N ′

12/(m1 − m2) is finite (in the
coincidence limit) if N ′

12 is finite. Then,

〈N ′
12F

2〉 = 〈n′′
12[m,F]F〉 = 〈−n′′

12m
′′F〉

= 〈(∆n′′)123m′2F + (−n′′
12m

′F)′〉
= 〈(∆n′′)123m′2F〉. (154)

Therefore, the term 〈N ′
12F

2〉 is also redundant.
Let us now discuss the existence of more general chi-

ral invariant functionals which do not have the analytical
form in (79). Since the functional is chiral invariant, it can
be computed in a chirally rotated configuration. The point
is that it is always possible to chirally rotate a configura-
tion so that mRL = mLR = S, P = 0. In the chiral gauge
P = 0 the only remaining freedom is that of vector gauge
transformations. Therefore, there are as many chiral in-
variant functionals of mLR, mRL, vR and vL as there are
vector gauge invariant functionals of S, V and A. These
rotated VA fields depend on the original chiral fields in a
non-analytical way.

The most general VA functional has been considered
in Sect. 5.3, (121). In four dimensions (and assuming mir-
ror symmetry) it depends on four independent functions:
M123, M1234, M ′

1234 and M ′′
123. When the functional de-

rives from an analytical form, these functions take the
form given in (132). In particular, M123, and M1234, coin-
cide with the functions A123 and A1234 of the effective cur-
rents. (The gWZW contribution has to be removed from
these functions, but this does not change the argument.)
Since the current determines the effective action, it follows
that M123 and M1234 determine N123 and N1234, and so
determine the other two functions M ′

1234 and M ′′
123. This

already implies that the analytical form is not the most
general one, since one could imagine new functionals ob-
tained by keeping the same M123 and M1234, but arbitrar-
ily modifying M ′

1234 and M ′′
123. Such functionals would not

be equivalent to an analytical one for any choice of N123
and N1234.

Even in two dimensions, where the VA functional con-
tains only one arbitrary function M12, the analytical func-
tional

〈
N12m′2〉 is not the most general one. When the VA

functional is analytical (in terms of the unrotated vari-
ables)

M12 = −2(S1 + S2)N12. (155)

(This is just (90) removing the gWZW contribution. N12
is evaluated at m1,2 = S1,2.) The function N12 is restricted
by consistency, cyclic symmetry and finiteness (we do not
enforce mirror symmetry here) and this implies

M12 = −M12, (S1−S2)M12 = (S1+S2)M21, M11 = 0.
(156)

IfM12 is analytical in S, the first condition follows from di-
mensional counting (unless the VA functional breaks scale
invariance or depends on new external fields), but the
other two conditions are not required to have an accept-
able VA functional (M12 still has to be finite at S1 = S2).
For instance,

Γ [S, V,A] =
〈
1
S
S′A

〉
(157)

violates the conditions and so it cannot be written as〈
N12m′2〉 for any suitable N12.
Another comment is the following. At the end of

Sect. 2.2 we noted that one could consider phenomeno-
logical contributions of the form 〈h(u1, u2)du2〉 in two di-
mensions (and similar comments apply to four dimensions
as well) which are consistent with vector gauge invariance
but are not chiral invariant except when the true func-
tion hWZW(u1, u2) is used. Chiral invariance in no longer
a problem for functionals of the form 〈h(m1,m2)m′2〉 (i.e.
the same form of W−

c [v,m] but with a different function).
Such phenomenological terms, which are vanishing on the
chiral circle, are topological in the sense that they do
not contribute the strength-energy tensor and their corre-
sponding baryonic current is conserved independently of
the equations of motion. This can be seen from (115): set-
ting v = 0 and taking the trace it says that the baryonic
current is a closed form, and this result does not depend
of the explicit form of W−

c [v,m].

5.7 Descent relations

It is known that the VA version of the pseudo-parity odd
component of the effective action equals 2πi times the
baryon number in two more dimensions [19,20,11] (see
[14] for a proof in the framework of the ζ-function regu-
larized effective action). In this relation one of the extra
dimensions, u, is regarded as the time and the other, v,
is a new space direction. The relation holds provided that
the dependence of the d + 2-dimensional configuration is
u-independent and adiabatic in v, so that no more than
one v derivative is retained. In this case, and choosing
ηd = id/2, the relation takes the form

W−
VA,d = −2πi〈J−

VA,V 〉d+2 (ηd = id/2). (158)

The subscripted dimension in the right-hand side refers
to the normalization of 〈 〉, (3). J−

VA,V denotes the vec-
tor current associated to W−

VA,d+2[v,m]. Under the condi-
tions stated above, and due to gauge invariance, only the
pseudo-parity odd component of the current has a contri-
bution to the baryon number [14].
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The previous relation can be rewritten as one for the
LR version as follows:

W−
d [v,m] = −2πi〈J−

v,c〉d+2 − 2WCS,d+1[v], (159)

where WCS is the Chern–Simons action

WCS,d=1[v] = 〈v〉d=0 ,

WCS,d=3[v] =
〈
1
3
v3 − vF

〉
d=2

. (160)

The Chern–Simons terms are precisely those appearing in
(75), and account for all the chiral symmetry breaking in
W−

d [v,m]. (The factor of 2 in WCS accounts for a Chern–
Simons term for the right field and the other for the left
field.)

Let us give details on the derivation of (159) for d = 2
(assuming (158)). The four-dimensional counterterm re-
lating the VA and LR versions is given in (A6). Its con-
tribution to the vector current is minus

Jct,d=4 = −2{F, v}+ 2v3 + 6d(vRvL). (161)

This contribution is to be combined in (158) with that
of the counterterm current, relating the consistent and
covariant currents, (87). This yields

2πi 〈P − Jct〉d=4 = 2WCS,d=3 + Pct,d=2, (162)

from which (159) follows.
As we have said, the chirality breaking terms coincide

at both sides of (159). On the other hand, equating the
chirality preserving terms at both sides gives a relation
between the functions N in d dimensions and the func-
tions A in d + 2 dimensions. (J−

v,c,d+2 is a d + 1-form, so
W−

d [v,m] must first be brought to a d + 1-dimensional
form by applying D̂.) For d = 0 and d = 2 the relations
are

0 = f1 = f12 − f21 = f123 − f231 + f312, (163)

where

f1 =
1

m1
+

1
2
A11,

f12 =
1

m1
+

1
m2

− 2(m1 − m2)N12 − 1
6
(A121 +A212),

f123 = −1
3

1
m1m2m3

+ (∆N)123 − 1
6
A1231. (164)

These relations are checked by our calculation.
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Appendix A: Chiral anomaly and WZW action

Here we will collect some formulas which are needed in the
text. The variation of the effective action under infinites-
imal chiral rotations is the (consistent) chiral anomaly.

As is well known, W+ can be renormalized so that it
is free from chiral anomalies and hence only the pseudo-
parity odd component of the effective action is necessarily
anomalous.

Let ΩL,R = exp(αR,L). Then, the LR version of the
anomaly takes the form (where α is infinitesimal)

δW−
LR,d=0[v,m] = − 〈αR − αL〉 = 〈−2α〉 ,

δW−
LR,d=2[v,m] = 〈vRdαR − vLdαL〉 = 〈2vdα〉 , (A1)

δW−
LR,d=4[v,m] =

〈(−4Fv + 2v3) dα〉 .
The LR anomaly presents two key features. First, it does
not depend on m, and second, the two chiral sectors do
not mix. In addition, it is consistent, i.e. a true variation.
Let (v,m) be a field configuration obtained from another
configuration (v̄, m̄) through a chiral rotation (ΩL, ΩR),
i.e. (v,m) = (v̄, m̄)Ω . Then integration of the anomaly
yields

W−
LR[v,m] = W−

LR[v̄, m̄] + Γ [vR, ΩR]− Γ [vL, ΩL]. (A2)

(Γ [v,Ω] is the same function in both cases, but with dif-
ferent arguments.) Reflecting the same property of the LR
anomaly, the variation is composed of two terms which are
not mixed and are independent of m. Explicitly,

Γd=2[v,Ω] =
〈

−1
3
(r3

c + v3) + (rc + v)F
〉

=
〈

−1
3
r3 + vr

〉
, (A3)

Γd=4[v,Ω] =
〈

−1
5
(r5

c + v5) + (r3
c + v3)F − 2(rc + v)F 2

〉
=
〈
−1
5
r5 + vr3 + v2r2 − 1

2
(vr)2v3r − 2Fvr

〉
,

(A4)

where r = Ω−1dΩ and rc = Ω−1dΩ − v.
The VA version of the effective action is characterized

by being vector gauge invariant. It is obtained from the
LR version by subtracting an appropriate local polynomial
counterterm:

W−
VA[v,m] = W−

LR[v,m]− Pct[v]. (A5)

Note that the counterterm is independent of m. Explicitly
(Convention 1 applies),

Pct,d=2[v] = 〈vRvL〉 , (A6)

Pct,d=4[v] =
〈
2FR[vL, vR] + 2vRv3

L − 1
2
(vRvL)2

〉
.

The corresponding VA anomaly is thus

δW−
VA,d=2[v,m] =

〈
4
(
FV − A2)αA

〉
, (A7)

δW−
VA,d=4[v,m] =

〈−4 (3F 2
V + F 2

A − 4AFV A

− {FV , A2} − A4)αA

〉
,
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where vR,L = V ± A, FV = D2
V = dV + V 2 and FA =

{D,A}. In addition, we have introduced the vector and
axial variations through αR,L = αV ± αA. As advertised,
in this case there is no anomaly associated to vector trans-
formations.

Consider now the variation of the VA effective action

W−
VA[v,m] = W−

VA[v̄, m̄] + ΓVA[v, U ], U := Ω−1
L ΩR.

(A8)
ΓVA[v, U ] is the gauged WZW action which, by construc-
tion, saturates the VA anomaly. Because the anomaly is
independent of m, so is ΓVA[v, U ]. In addition, since W−

VA
is vector gauge invariant its variation depends on ΩL,R

only through the combination U = Ω−1
L ΩR, i.e., the axial

part of Ω. The LR form of this relation is obtained by
adding the counterterm Pct[v]. This gives

W−
LR[v,m] = W−

VA[v̄, m̄] + ΓLR[v, U ]. (A9)

Note that by construction ΓVA[v, 1] = 0 and ΓLR[v, 1] =
Pct[v], so

ΓVA[v, U ] = ΓLR[v, U ]− ΓLR[v, 1]. (A10)

ΓLR[v, 1] is known as the Bardeen subtraction.
Comparing (A2), (A5) and (A9), it follows that

ΓLR[v, U ] = Γ (vR, ΩR)− Γ (vL, ΩL) + Pct[v̄]. (A11)

On the other hand, noting that the Bardeen subtraction
vanishes for purely right or left gauge fields, we find

Γ [v,Ω] = ΓLR[vR = v, vL = 0, U = Ω]. (A12)

Explicitly, in two dimensions

ΓLR,d=2[v, U ] =

〈
− 1

3
(U−1dU)3 − U−1dUvR

+UdU−1vL − U−1vLUvR

〉
. (A13)

In order to use the Conventions 1 and 2, let us define U
as (U)LR = U and (U)RL = U−1. Note that U−1 equals U
with our conventions. In addition, let R = UdU. Then

ΓLR,d=2[v, U ] =
〈

−1
3
R3 − 2Rv − UvUv

〉
. (A14)

In four dimensions

ΓLR,d=4[v, U ] =
〈

−1
5
R5 − 2R3v + (Rv)2 + 2R2vUvU

+2RUvUdv + 2Rv3 + 2RvUvUv + 2(R+ UvU){v,dv}
+2UvUv3 +

1
2
(UvUv)2

〉
. (A15)

Appendix B: Explicit formulas for the functions
A and N in two and four dimensions

For the currents we give the formulas for the associated
functions Ā which are more symmetric. In two dimensions

Ā12 = − 2
m1 +m2

− 2m1m2

(m1 +m2)(m2
1 − m2

2)
log(m2

1/m
2
2).

(B1)

In four dimensions,

Ā123 = ĀR
123 + ĀL

123 log(m
2
1/m

2
3) + ĀL

213 log(m
2
2/m

2
3) (B2)

Ā1234 = ĀR
1234 + ĀL

1234 log(m
2
1) + ĀL

2341 log(m
2
2)

+ ĀL
3412 log(m

2
3) + ĀL

4123 log(m
2
4) (B3)

(where the superindices R and L refer to rational and log-
arithmic components, respectively). With

ĀR
123 =

6(m1m2 +m1m3 +m2m3)
(m1 +m2)(m1 +m3)(m2 +m3)

(B4)

ĀL
123=

6m3
1(m1m2 +m1m3 + 2m2m3)

(m1 +m2)(m1 +m3)(m2
1 − m2

2)(m
2
1 − m2

3)
, (B5)

ĀR
1234 = {(6(m1m2m3 +m1m2m4 +m1m3m4

+m2m3m4))/((m1 +m2)(m1 +m3)(m1 +m4)
×(m2 +m3)(m2 +m4)(m3 +m4))} (B6)

ĀL
1234 = −{(6m3

1(m1(m2m3 +m2m4 +m3m4)
+2m2m3m4 − m3

1))/((m1 +m2)(m1 +m3)
×(m1 +m4)(m2

1 − m2
2)(m

2
1 − m2

3)
×(m2

1 − m2
4))}. (B7)

For the effective action in two dimensions

N12 = − m1m2

m2
1 − m2

2

(
log(m2

1/m
2
2)

m2
1 − m2

2
− 1

2

(
1

m2
1
+

1
m2

2

))
.

(B8)

In four dimensions, the function N123 can be written
as

N123=NR
123 +NL

123 log(m
2
1/m

2
2)−NL

321 log(m
2
3/m

2
2), (B9)

with

NR
123 =

1
2m1m2m3(m2

1 − m2
2)(m

2
3 − m2

2)(m1 − m3)

×
(
3m2

1m
2
3(m1 − m3)2

+4m1m2m3(m1 +m3)(2m2
1 − 3m1m3 + 2m2

3 − m2
2)

+m2
2(m

4
1 + 10m3

1m3 − 18m2
1m

2
3 + 10m1m3

3 +m4
3)

−m4
2(m1 +m3)2

)
, (B10)

NL
123 =

2
(m2

1 − m2
2)2(m

2
1 − m2

3)(m1 − m3)

×
(
m4

1(m2 − 2m3) +m2
1(m

3
2 +m3

3)

+m2
2m

2
3(m2 +m3) +m3

1(m
2
2 − 3m2m3 − m2

3)

−m1m2m3(m2
2 − m2

3)
)
. (B11)
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Likewise,

N1234 = NR
1234 +NL

1234 log(m
2
1) +NL

2341 log(m
2
2)

+ NL
3412 log(m

2
3) +NL

4123 log(m
2
4), (B12)

where

NR
1234 =

1
4

(
2(2m2 +m3)

(m2
1 − m2

2)(m
2
2 − m2

3)(m2 − m4)

− 2(2m2 +m1)
(m2

1 − m2
2)(m

2
2 − m2

3)(m2 +m4)

− 3(m2m3 − m1(m2 +m3))
m3(m2

1 − m2
3)(m

2
2 − m2

3)(m3 − m4)

+
3(m1m2 − m3(m1 +m2))

m1(m2
1 − m2

2)(m
2
1 − m2

3)(m1 +m4)

− m2m3 +m1(m2 +m3)
m1(m2

1 − m2
2)(m

2
1 − m2

3)(m1 − m4)

+
m2m3 +m1(m2 +m3)

m3(m2
1 − m2

3)(m
2
2 − m2

3)(m3 +m4)

+
1

m1m2m3m4

)
, (B13)

NL
1234 =

1
2(m2

1 − m2
2)2(m

2
1 − m2

3)2(m
2
1 − m2

4)2

× (6m7
1m3 + (m2 − m4)(m2

2m
3
3m

2
4 + 3m6

1m3)
− m1m2m3

3m4(m2 − m4)2

+ m2
1m

2
3(m

3
2(2m4 +m3)− m3

4(2m2 +m3))
− m4

1(m2 − m4)(2m2
2(m3 +m4)

+ m2m4(m3 + 2m4) + 2m3(m2
3 +m2

4))
+ m3

1(−m2
3m

3
4 +m2

2m
2
4(2m3 +m4)

+ m2m3m4(2m2
3 +m2

4) +m3
2(−m2

3 +m3m4 +m2
4))

− m5
1(m

2
2(4m3 +m4) +m2(−m2

3 + 2m3m4 +m2
4)

+ m3(2m2
3 − m3m4 + 4m2

4))). (B14)

We have tried to write these formulas in a form as
simple as possible. In the case of NR

1234, this implies that
the cyclic property is not manifest.
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